Lời giải của giáo viên
\(\mathop {\lim }\limits_{x \to \infty } \frac{{x - 2}}{{1 - x}} = - 1\)
Vậy tiệm cận ngang của đồ thị hàm số là y = -1.
CÂU HỎI CÙNG CHỦ ĐỀ
Gọi S là các tập hợp các giá trị nguyên của tham số m để giá trị lớn nhất của hàm số \(f\left( x \right) = \left| {{x^3} - 3mx + 8} \right|\) trên đoạn [0;3] bằng 8. Tổng các số nguyên m bằng
Gọi S là tập hợp các hoành độ giao điểm của đồ thị hàm số \(y = {x^4} - 3{x^2} - 3\) và đường thẳng y = 1. Tổng các phần tử của S là
Cho số nguyên a, số thực b. Gọi S là tập hợp các giá trị nguyên của a để tồn tại số thực x thỏa mãn \(x + a = {4^b}\) và \(\sqrt {x - 2} + \sqrt {a + 2} = {3^b}\). Tổng các phần tử của tập S là
Số giá trị nguyên của tham số m để hàm số \(y = \frac{{mx - 4}}{{x - m}}\) đồng biến trên khoảng (0;2) là
Cho hàm số y = f(x) xác định, liên tục trên R và có đồ thị như hình vẽ bên. Có bao nhiêu giá trị nguyên của m để phương trình \(2f\left( {3 - 4\sqrt {6x - 9{x^2}} } \right) = m - 3\) có nghiệm?
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, mặt bên SAB là tam giác vuông cân tại đỉnh S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính khoảng cách h giữa hai đường thẳng SB và AC.
Cho x và y là những số thực không âm thỏa mãn \({x^2} + 2x + \frac{{{y^2}}}{2} - 3 = {\log _2}\frac{{\sqrt {9 - {y^2}} }}{{x + 1}}\).
Giá trị lớn nhất của biểu thức T = x + y thuộc tập nào dưới đây ?
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x - 2y + z = 0\) và đường thẳng \(d:\frac{{x + 1}}{4} = \frac{{y + 1}}{3} = \frac{{z - 2}}{{ - 1}}\). Tọa độ giao điểm của (P) và d là điểm nào dưới đây?
Trong không gian Oxyz, mặt cầu (S) có tâm I(-1;4;2) và có bán kính R = 5 có phương trình là:
Tổng tất cả các giá trị của tham số m để phương trình \({25^x} - \left( {m + 1} \right){.5^x} + m = 0\) có hai nghiệm thực phân biệt x1, x2 thỏa mãn \(x_1^2 + x_2^2 = 4\) bằng:
Cho hình chóp S.ABC biết \(SA \bot \left( {ABC} \right)\), SA = a. Tam giác ABC là tam giác đều cạnh bằng a. M là trung điểm của BC. Khoảng cách giữa hai đường thẳng SM và AB bằng
Cho hàm số y = f(x) liên tục trên R và có đạo hàm \(f'\left( x \right) = \left( {x - 1} \right){\left( {x - 2} \right)^2}{\left( {x - 5} \right)^3}\). Số điểm cực trị của hàm số y = f(x) là
Cho hàm số y = f(x) có bảng biến thiên dưới đây.
Giá trị cực đại của hàm số đã cho bằng bao nhiêu?
Thầy giáo tặng hết 5 quyển sách tham khảo khác nhau cho ba học sinh giỏi luyện tập. Số cách tặng để mỗi học sinh nhận được ít nhất một quyển sách là
Trong không gian cho tam giác ABC đều cạnh 2a, gọi H là trung điểm của cạnh BC. Khi quay tam giác ABC xung quanh cạnh AH ta được một hình nón có diện tích toàn phần bằng