Câu hỏi Đáp án 2 năm trước 29

Tìm tất cả các giá trị tham số \(m\) để bất phương trình \(6x + \sqrt {\left( {2 + x} \right)\left( {8 - x} \right)}  \le {x^2} + m - 1\) nghiệm đúng với mọi \(x \in \left[ { - 2;8} \right].\)

A. \(m \ge 16.\)

B. \(m \ge 15.\)

Đáp án chính xác ✅

C. \(m \ge 8.\)

D. \( - 2 \le m \le 16.\)

Lời giải của giáo viên

verified HocOn247.com

Bất phương trình tương đương \( - {x^2} + 6x + 16 + \sqrt {\left( {2 + x} \right)\left( {8 - x} \right) - 15}  \le m\)

Đặt \(\sqrt {\left( {2 + x} \right)\left( {8 - x} \right)}  = t;x \in \left[ { - 2;8} \right] \Rightarrow t \in \left[ {0;5} \right]\)

Bất phương trình trở thành \({t^2} + t - 15 \le m,t \in \left[ {0;5} \right]\)

Xét hàm số \(f\left( t \right) = {t^2} + t - 15 \le m,t \in \left[ {0;5} \right]\)

\(\begin{array}{l}
f'\left( t \right) = 2t + 1\\
f'\left( t \right) = 0t =  - \frac{1}{2}
\end{array}\)

Bảng biến thiên 

Nhìn vào bảng biến thiên ta thấy để bất phương trình có nghiệm thì \(m \ge 15\)

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Với \(n\) là số tự nhiên lớn hơn 2, đặt \({S_n} = \frac{1}{{C_3^3}} + \frac{1}{{C_4^3}} + \frac{1}{{C_5^4}} + ... + \frac{1}{{C_n^3}}\). Tính \(S_n\)

Xem lời giải » 2 năm trước 53
Câu 2: Trắc nghiệm

Với \(a\) là số thực dương bất kì, mệnh đề nào dưới đây đúng?

Xem lời giải » 2 năm trước 41
Câu 3: Trắc nghiệm

Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng \(a\), góc giữa mặt bên và mặt đáy bằng \(60^0\).

Tính diện tích xung quanh của hình nón đỉnh S, đáy là hình tròn ngoại tiếp tam giác ABC

Xem lời giải » 2 năm trước 40
Câu 4: Trắc nghiệm

Trong mặt phẳng với hệ tọa độ Oxy, cho điểm \(M( - 3;1)\) và đường tròn \(\left( C \right):{x^2} + {y^2} - 2x - 6y + 6 = 0\). Gọi \({T_1},{T_2}\) là các tiếp điểm của các tiếp tuyến kẻ từ M đến (C). Tính khoảng cách từ O đến đường thẳng \({T_1}{T_2}.\)

Xem lời giải » 2 năm trước 40
Câu 5: Trắc nghiệm

Cho \(f\left( x \right) = x.{{\rm{e}}^{ - 3x}}\). Tập nghiệm của bất phương trình \(f'\left( x \right) > 0\) là

Xem lời giải » 2 năm trước 39
Câu 6: Trắc nghiệm

Tập nghiệm của bất phương trình \(2{\log _2}\left( {x - 1} \right) \le {\log _2}\left( {5 - x} \right) + 1\) là

Xem lời giải » 2 năm trước 38
Câu 7: Trắc nghiệm

Phương trình: \({\log _3}\left( {3x - 2} \right) = 3\) có nghiệm là

Xem lời giải » 2 năm trước 37
Câu 8: Trắc nghiệm

Cho \(a, b\) là các số thực dương thỏa mãn \(b>1\) và \(\sqrt a  \le b < a\) . Tìm giá trị  nhỏ nhất của biểu thức \(P = {\log _{\frac{a}{b}}}a + 2{\log _{\sqrt b }}\left( {\frac{a}{b}} \right).\)

Xem lời giải » 2 năm trước 37
Câu 9: Trắc nghiệm

Tính thể tích của khối lăng trụ tam giác đều có tất cả các cạnh bằng \(a\).

Xem lời giải » 2 năm trước 37
Câu 10: Trắc nghiệm

Tập xác định của \(y = \ln \left( { - {x^2} + 5x - 6} \right)\) là

Xem lời giải » 2 năm trước 36
Câu 11: Trắc nghiệm

Trong mặt phẳng với hệ tọa độ Oxy giả sử điểm \(A(a;b)\) thuộc đường thẳng \(d:\,\,x - y - 3 = 0\) và cách \(\Delta :\,\,2x - y + 1 = 0\) một khoảng bằng \(\sqrt 5 .\) Tính \(P=ab\) biết \(a>0\)

Xem lời giải » 2 năm trước 35
Câu 12: Trắc nghiệm

Cho biểu thức \(P = \sqrt[3]{{x.\sqrt[4]{{{x^3}\sqrt x }}}}\), với \(x > 0.\) Mệnh đề nào dưới đây đúng ?

Xem lời giải » 2 năm trước 35
Câu 13: Trắc nghiệm

Có bao nhiêu giá trị nguyên của \(x\) để hàm số \(y = \left| {x - 1} \right| + \left| {x + 3} \right|\) đạt giá trị nhỏ nhất.

Xem lời giải » 2 năm trước 34
Câu 14: Trắc nghiệm

Trong mặt phẳng với hệ tọa độ Oxy, cho  elip \(\left( E \right):\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\). Điểm \(M \in \left( E \right)\) sao cho \(\widehat {{F_1}M{F_2}} = {90^0}.\) Tìm bán kính đường tròn nội tiếp tam giác \(M{F_1}{F_2}.\)

Xem lời giải » 2 năm trước 34
Câu 15: Trắc nghiệm

Hình hộp chữ nhật có ba kích thước đôi một khác nhau có bao nhiêu mặt phẳng đối xứng ?

Xem lời giải » 2 năm trước 34

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »