Tìm tất cả các giá trị tham số \(m\) để bất phương trình \(6x + \sqrt {\left( {2 + x} \right)\left( {8 - x} \right)} \le {x^2} + m - 1\) nghiệm đúng với mọi \(x \in \left[ { - 2;8} \right].\)
A. \(m \ge 16.\)
B. \(m \ge 15.\)
C. \(m \ge 8.\)
D. \( - 2 \le m \le 16.\)
Lời giải của giáo viên
Bất phương trình tương đương \( - {x^2} + 6x + 16 + \sqrt {\left( {2 + x} \right)\left( {8 - x} \right) - 15} \le m\)
Đặt \(\sqrt {\left( {2 + x} \right)\left( {8 - x} \right)} = t;x \in \left[ { - 2;8} \right] \Rightarrow t \in \left[ {0;5} \right]\)
Bất phương trình trở thành \({t^2} + t - 15 \le m,t \in \left[ {0;5} \right]\)
Xét hàm số \(f\left( t \right) = {t^2} + t - 15 \le m,t \in \left[ {0;5} \right]\)
\(\begin{array}{l}
f'\left( t \right) = 2t + 1\\
f'\left( t \right) = 0t = - \frac{1}{2}
\end{array}\)
Bảng biến thiên
Nhìn vào bảng biến thiên ta thấy để bất phương trình có nghiệm thì \(m \ge 15\)
CÂU HỎI CÙNG CHỦ ĐỀ
Với \(n\) là số tự nhiên lớn hơn 2, đặt \({S_n} = \frac{1}{{C_3^3}} + \frac{1}{{C_4^3}} + \frac{1}{{C_5^4}} + ... + \frac{1}{{C_n^3}}\). Tính \(S_n\)
Với \(a\) là số thực dương bất kì, mệnh đề nào dưới đây đúng?
Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng \(a\), góc giữa mặt bên và mặt đáy bằng \(60^0\).
Tính diện tích xung quanh của hình nón đỉnh S, đáy là hình tròn ngoại tiếp tam giác ABC
Trong mặt phẳng với hệ tọa độ Oxy, cho điểm \(M( - 3;1)\) và đường tròn \(\left( C \right):{x^2} + {y^2} - 2x - 6y + 6 = 0\). Gọi \({T_1},{T_2}\) là các tiếp điểm của các tiếp tuyến kẻ từ M đến (C). Tính khoảng cách từ O đến đường thẳng \({T_1}{T_2}.\)
Cho \(f\left( x \right) = x.{{\rm{e}}^{ - 3x}}\). Tập nghiệm của bất phương trình \(f'\left( x \right) > 0\) là
Tập nghiệm của bất phương trình \(2{\log _2}\left( {x - 1} \right) \le {\log _2}\left( {5 - x} \right) + 1\) là
Phương trình: \({\log _3}\left( {3x - 2} \right) = 3\) có nghiệm là
Cho \(a, b\) là các số thực dương thỏa mãn \(b>1\) và \(\sqrt a \le b < a\) . Tìm giá trị nhỏ nhất của biểu thức \(P = {\log _{\frac{a}{b}}}a + 2{\log _{\sqrt b }}\left( {\frac{a}{b}} \right).\)
Tính thể tích của khối lăng trụ tam giác đều có tất cả các cạnh bằng \(a\).
Tập xác định của \(y = \ln \left( { - {x^2} + 5x - 6} \right)\) là
Trong mặt phẳng với hệ tọa độ Oxy giả sử điểm \(A(a;b)\) thuộc đường thẳng \(d:\,\,x - y - 3 = 0\) và cách \(\Delta :\,\,2x - y + 1 = 0\) một khoảng bằng \(\sqrt 5 .\) Tính \(P=ab\) biết \(a>0\)
Cho biểu thức \(P = \sqrt[3]{{x.\sqrt[4]{{{x^3}\sqrt x }}}}\), với \(x > 0.\) Mệnh đề nào dưới đây đúng ?
Có bao nhiêu giá trị nguyên của \(x\) để hàm số \(y = \left| {x - 1} \right| + \left| {x + 3} \right|\) đạt giá trị nhỏ nhất.
Trong mặt phẳng với hệ tọa độ Oxy, cho elip \(\left( E \right):\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\). Điểm \(M \in \left( E \right)\) sao cho \(\widehat {{F_1}M{F_2}} = {90^0}.\) Tìm bán kính đường tròn nội tiếp tam giác \(M{F_1}{F_2}.\)
Hình hộp chữ nhật có ba kích thước đôi một khác nhau có bao nhiêu mặt phẳng đối xứng ?