Tìm tất cả các giá trị thực của tham số m sao cho hàm số \(y = \frac{{m{x^3}}}{3} + 7m{x^2} + 14x - m + 2\) nghịch biến trên \(\left[ {1; + \infty } \right).\)
A. \(\left( { - \infty ; - \frac{{14}}{{15}}} \right).\)
B. \(\left( { - \infty ; - \frac{{14}}{{15}}} \right].\)
C. \(\left[ { - 2; - \frac{{14}}{{15}}} \right]\)
D. \(\left[ { - \frac{{14}}{{15}}; + \infty } \right).\)
Lời giải của giáo viên
Ta có: \(y' = m{x^2} + 14mx + 14.\)
Hàm số đã cho nghịch biến trên \(\left[ {1; + \infty } \right)\) khi và chỉ khi \(y' = m{x^2} + 14mx + 14 \le 0,\forall x \in \left[ {1; + \infty } \right)\)
\( \Leftrightarrow m\left( {{x^2} + 14} \right) \le - 14,\forall x \in \left[ {1; + \infty } \right) \Leftrightarrow m \le \frac{{ - 14}}{{{x^2} + 14}},\forall x \in \left[ {1; + \infty } \right)\left( 1 \right).\)
Đặt \(f\left( x \right) = \frac{{ - 14}}{{{x^2} + 14}},\forall x \in \left[ {1; + \infty } \right) \Rightarrow f'\left( x \right) = \frac{{28x}}{{{{\left( {{x^2} + 14} \right)}^2}}} > 0,\forall x \in \left[ {1; + \infty } \right).\)
Do đó: \(\mathop {Min}\limits_{\left[ {1; + \infty } \right)} f\left( x \right) = f\left( 1 \right) = \frac{{ - 14}}{{15}}\left( 2 \right).\)
Từ (1), (2) suy ra giá trị m cần tìm là \(m \in \left( { - \infty ; - \frac{{14}}{{15}}} \right).\)
CÂU HỎI CÙNG CHỦ ĐỀ
Hệ số của x5 trong khai triển \({\left( {1 - 2x - 3{x^2}} \right)^9}\) là
Tìm giá trị nhỏ nhất của hàm số \(y = {x^2} - 1\) trên đoạn [-3;2]?
Cho hình lập phương ABCD.A'B'C'D' cạnh a. Tính khoảng cách giữa hai đường thẳng AB' và CD'
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SAD là tam giác đều và nằm trong mặt phẳng vuông góc với (ABCD). Gọi M, N, P lần lượt là tủng điểm các cạnh SB, BC, CD. Tính thể tích khối tứ diện CMNP.
Cho cấp số cộng (un) có các số hạng đầu lần lượt là 5; 9; 13; 17; … Tìm công thức số hạng tổng quát un của cấp số cộng?
Cho hàm số \(y = \frac{{{x^2} + x}}{{x - 2}}\) có đồ thị (C). Phương trình tiếp tuyến tại điểm A(1;-2) của (C) là
Cho hàm số \(y=f(x)\) có bảng biến thiên như hình vẽ sau:
Khi đó số nghiệm của phương trình \(2\left| {f\left( {2x - 3} \right)} \right| - 5 = 0\) là:
Tung hai con súc sắc 3 lần độc lập với nhau. Tính xác suất để có đúng một lần tổng số chấm xuất hiện trên hai con súc sắc bằng 6. Kết quả làm tròn đến 3 ba chữ số ở phần thập phân)
Tất cả các giá trị của tham số m để hàm số \(y = \left( {m - 1} \right){x^4}\) đạt cực đại tại x = 0 là
Biết số tự nhiên n thỏa mãn \(C_n^1 + 2\frac{{C_n^2}}{{C_n^1}} + ... + n\frac{{C_n^n}}{{C_n^{n - 1}}} = 45\) . Tính \(C_{n + 4}^n\) ?
Cho cấp số nhân (un) thỏa mãn \(\left\{ \begin{array}{l}
{u_1} - {u_3} + {u_5} = 65\\
{u_1} + {u_7} = 325
\end{array} \right..\) Tính u3.
Tất cả các nghiệm của phương trình \({\mathop{\rm tanx}\nolimits} = cotx\) là
Cho hàm số \(y = \sqrt {{x^2} - 1} .\) Mệnh đề nào dưới đây đúng?
Giá trị cực đại yCĐ của hàm số \(y = {x^3} - 12x + 20\) là
Cho hình lăng trụ ABC.A'B'C' có các mặt bên là hình vuông cạnh \(a\sqrt 2 .\) Tính theo a thể tích V của khối lăng trụ ABC.A'B'C'