Tìm tọa độ véc tơ \(\overrightarrow u \) biết rằng \(\overrightarrow u + \overrightarrow a = \overrightarrow 0 \) và \(\overrightarrow a = (1; - 2;1)\)
A. \(\overrightarrow u = \left( { - 3;\; - 8;\;2} \right)\)
B. \(\overrightarrow u = \left( {1; - \;2;\;8} \right)\)
C. \(\overrightarrow u = \left( { - 1;\;2;\; - 1} \right)\)
D. \(\overrightarrow u = \left( {6;\; - 4;\; - 6} \right)\)
Lời giải của giáo viên
CÂU HỎI CÙNG CHỦ ĐỀ
Cho biểu thức \(P = {\left( {\sqrt[3]{x} - \frac{1}{{\sqrt x }}} \right)^{10}}\) với \(x>0\). Tìm số hạng không chứa \(x\) trong khai triển nhị thức Niu-tơn của P.
Nguyên hàm của hàm số \(f\left( x \right) = \sqrt {3x + 2} \) là
Cho hai số thực \(a, b\) thỏa mãn \({\log _{{a^2} + 4{b^2} + 1}}\left( {2a - 8b} \right) = 1\). Tính \(P = \frac{a}{b}\) khi biểu thức \(S = 4a + 6b - 5\) đạt giá trị lớn nhất.
Với điều kiện nào của m thì phương trình \((3{m^2} - 4)x - 1 = m - x\) có nghiệm duy nhất?
Gọi S là tập hợp tất cả các giá trị nguyên của tham số m thuộc đoạn \(\left[ { - 10;3} \right]\) để hàm số \(y = - {x^3} - 6{x^2} + \left( {m - 9} \right)x + 2019\) nghịch biến trên khoảng \(\left( { - \infty ; - 1} \right)\). Hỏi S có bao nhiêu phần tử?
Cho hàm số có bảng xét dấu của đạo hàm như sau
Hàm số \(y = f\left( {2x + 1} \right) + \frac{2}{3}{x^3} - 8x + 2019\) nghịch biến trên khoảng nào dưới đây?
Hàm số nào sau đây có bảng biến thiên như hình bên:
Một khối trụ có bán kính đáy bằng 2 cm và có thiết diện qua trục là một hình vuông. Tính thể tích của khối trụ là:
Với \(a\) là số thực dương tùy ý khác 1, giá trị của \({\log _{{a^3}}}a\) bằng:
Giả sử vào cuối năm thì một đơn vị tiền tệ mất 10% giá trị so với đầu năm. Tìm số nguyên dương nhỏ nhất sao cho sau n năm, đơn vị tiền tệ sẽ mất đi ít nhất 90% giá trị của nó?
Phương trình \({3^x}{.2^{x + 1}} = 72\) có nghiệm là
Xét các số thực với \(a \ne 0,b > 0\) sao cho phương trình \(a{x^3} - {x^2} + b = 0\) có ít nhất hai nghiệm thực. Giá trị lớn nhất của biểu thức \(a^2b\) bằng:
Với \(a, b\) là các tham số thực. Giá trị tích phân \(\int\limits_0^b {\left( {3{x^2} - 2ax - 1} \right){\rm{d}}x} \) bằng
Tập nghiệm của phương trình \(\sqrt {x - 2} \left( {{x^2} - 3x + 2} \right) = 0\) là :
Trong mặt phẳng với hệ tọa độ đề các vuông góc Oxy. Cho đường thẳng \(d:x - y + 1 = 0\) và đường tròn \((C) :{x^2} + {y^2} + 2x - 4y = 0.\) Tìm tọa độ điểm M thuộc đường thẳng d mà qua đó ta kẻ được hai đường thẳng tiếp xúc với đường tròn (C) tại A và B sao cho góc AMB bằng \(60^0\).