Câu hỏi Đáp án 2 năm trước 16

Tính thể tích của phần vật thể giới hạn bởi hai mặt phẳng x = 0 và x = 3 biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ \(x(0 \le x \le 3)\) là một hình chữ nhật có hai kích thước là x và \(2\sqrt {9 - {x^2}} .\)

A. 16

B. 17

C. 19

D. 18

Đáp án chính xác ✅

Lời giải của giáo viên

verified HocOn247.com

Nếu S(x) là diện tích thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox thì thể tích của vật thể giới hạn bởi hai mặt phẳng x =a và x = b là \(V = \int\limits_a^b {S(x)dx} .\)

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho a, b, x là các số thực dương thỏa mãn \({\log _5}x = 2{\log _{\sqrt 5 }}a + 3{\log _{\frac{1}{5}}}b\). Mệnh đề nào là đúng?

Xem lời giải » 2 năm trước 39
Câu 2: Trắc nghiệm

Trong không gian Oxyz, cho đường thẳng \(d:\frac{x+1}{1}=\frac{z-1}{-1}=\frac{y-3}{2}\). Một vectơ chỉ phương của d là

Xem lời giải » 2 năm trước 38
Câu 3: Trắc nghiệm

Nghiệm của phương trình 2x-3 = \(\frac12\) là

Xem lời giải » 2 năm trước 38
Câu 4: Trắc nghiệm

Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x - 2y + 2z - 1 = 0\). Khoảng cách từ điểm \(A\left( {1; - 2;1} \right)\) đến mặt phẳng (P) bằng

Xem lời giải » 2 năm trước 38
Câu 5: Trắc nghiệm

Biết \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = {x^2} + x\) và \(F\left( 1 \right) = 1\). Giá trị của \(F\left( { - 1} \right)\) bằng

Xem lời giải » 2 năm trước 35
Câu 6: Trắc nghiệm

Cho hai hàm số f(x) và g(x) có đạo hàm trên đoạn [1;4] và thỏa mãn hệ thức \(\left\{ \begin{array}{l} f\left( 1 \right) + g\left( 1 \right) = 4\\ g\left( x \right) = - x.f'\left( x \right);\,\,\,\,\,f\left( x \right) = - x.g'\left( x \right) \end{array} \right.\). Tính \(I = \int\limits_1^4 {\left[ {f\left( x \right) + g\left( x \right)} \right]{\rm{d}}x} \).

Xem lời giải » 2 năm trước 35
Câu 7: Trắc nghiệm

Tìm số giá trị nguyên thuộc đoạn \(\left[ { - 2021\,;2021} \right]\) của tham số m để đồ thị hàm số \(y = \frac{{\sqrt {x - 3} }}{{{x^2} + x - m}}\) có đúng hai đường tiệm cận.

Xem lời giải » 2 năm trước 35
Câu 8: Trắc nghiệm

Nguyên hàm của hàm số \(y = \frac{1}{{1 - x}}\) là:

Xem lời giải » 2 năm trước 34
Câu 9: Trắc nghiệm

Cho các số thực a, b, c thỏa mãn \({a^2} + {b^2} + {c^2} - 2a - 4b = 4\). Tính P = a + 2b + 3c khi biểu thức \(\left| {2a + b - 2c + 7} \right|\) đạt giá trị lớn nhất.

Xem lời giải » 2 năm trước 34
Câu 10: Trắc nghiệm

Tìm các giá trị của tham số m để hàm số \(y = \frac{1}{2}\ln \left( {{x^2} + 4} \right) - mx + 3\) nghịch biến trên khoảng \(\left( { - \infty ; + \infty } \right)\).

Xem lời giải » 2 năm trước 34
Câu 11: Trắc nghiệm

Cho hàm số bậc bốn y = f(x) có đồ thị như hình dưới đây. Số nghiệm của phương trình \(3f\left( x \right) + 1 = 0\) là

Xem lời giải » 2 năm trước 33
Câu 12: Trắc nghiệm

Trong không gian Oxyz, cho hai điểm \(A\left( {3;5; - 1} \right)\) và \(B\left( {1;1;3} \right)\). Tọa độ điểm M  thuộc mặt phẳng \(\left( {Oxy} \right)\) sao cho \(\left| {\overrightarrow {MA}  + \overrightarrow {MB} } \right|\) nhỏ nhất là

Xem lời giải » 2 năm trước 33
Câu 13: Trắc nghiệm

Cho hai số thực x,y thay đổi thỏa mãn \(x+y+1=2\left( \sqrt{x-2}+\sqrt{y+3} \right)\).Giá trị lớn nhất của biểu thức \(S={{3}^{x+y-4}}+\left( x+y+1 \right){{2}^{7-x-y}}-3\left( {{x}^{2}}+{{y}^{2}} \right)\) là \(\frac{a}{b}\) với a,b là các số nguyên dương và \(\frac{a}{b}\) tối giản. Tính a+b.

Xem lời giải » 2 năm trước 33
Câu 14: Trắc nghiệm

Cho hàm số \(y = f(x) = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình dưới đây

Có tất cả bao nhiêu giá trị nguyên của tham số \(m \in \left( { - 5;5} \right)\) để phương trình \({f^2}(x) - (m + 4)\left| {f(x)} \right| + 2m + 4 = 0\) có 6 nghiệm phân biệt

Xem lời giải » 2 năm trước 32
Câu 15: Trắc nghiệm

Tiệm cận đứng của đồ thị hàm số \(y = \frac{{x - 1}}{{x + 1}}\) là

Xem lời giải » 2 năm trước 32

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »