Lời giải của giáo viên
Cách 1: \(I = \int\limits_1^{\rm{e}} {x\ln x} dx\). Đặt \(\left\{ \begin{array}{l}
u = lnx\\
{\rm{d}}v = x{\rm{d}}x
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
{\rm{d}}u = \frac{1}{x}{\rm{d}}x\\
v = \frac{{{x^2}}}{2}
\end{array} \right.\)
\( \Rightarrow I = \left. {\frac{{{x^2}}}{2}\ln x} \right|_1^{\rm{e}} - \int\limits_1^{\rm{e}} {\frac{1}{x} \cdot \frac{{{x^2}}}{2}{\rm{d}}x} = \frac{{{{\rm{e}}^2}}}{2} - \frac{1}{2}\int\limits_1^{\rm{e}} {x{\rm{d}}x = \frac{{{{\rm{e}}^2}}}{2} - \left. {\frac{{{x^2}}}{4}} \right|_1^{\rm{e}}} = \frac{{{{\rm{e}}^2}}}{2} - \frac{{{{\rm{e}}^2}}}{4} + \frac{1}{4} = \frac{{{{\rm{e}}^2} + 1}}{4}\)
Cách 2: Máy tính
Quy trình bấm máy:
Máy hiện:
Kiểm tra các kết quả ta có C thỏa mãn (lần lượt trừ từng đáp án).
Phân tích phương án nhiễu:
Học sinh thường nhầm đáp án D do nhầm dấu khi thay cận:
\( \Rightarrow I = \left. {\frac{{{x^2}}}{2}\ln x} \right|_1^{\rm{e}} - \int\limits_1^{\rm{e}} {\frac{1}{x} \cdot \frac{{{x^2}}}{2}{\rm{d}}x} = \frac{{{{\rm{e}}^2}}}{2} - \frac{1}{2}\int\limits_1^{\rm{e}} {x{\rm{d}}x = \frac{{{{\rm{e}}^2}}}{2} - \left. {\frac{{{x^2}}}{4}} \right|_1^{\rm{e}}} = \frac{{{{\rm{e}}^2}}}{2} - \frac{{{{\rm{e}}^2}}}{4} + \frac{1}{4} = \frac{{{{\rm{e}}^2} + 1}}{4}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f(x)\) có đạo hàm trên đoạn [1;2], \(f(1)=1\) và \(f(2)=2\). Tính \(I = \int\limits_1^2 {f'\left( x \right){\rm{d}}x} \)
Tìm nguyên hàm \(F(x)\) của hàm số \(f\left( x \right) = \sin x + \cos x\) thoả mãn \(F\left( {\frac{\pi }{2}} \right) = 2\)
Cho \(F\left( x \right) = \frac{1}{{2{x^2}}}\) là một nguyên hàm của hàm số \(\frac{{f\left( x \right)}}{x}\). Tìm nguyên hàm của hàm số \(f'\left( x \right)\ln x\).
Viết công thức tính thể tích V của khối tròn xoay được tạo ra khi quay hình thang cong, giới hạn bởi đồ thị hàm số \(y=f(x)\), trục Ox và hai đường thẳng \(x=a, x = b\left( {a < b} \right)\), xung quanh trục Ox.
Tìm nguyên hàm của hàm số \(f\left( x \right) = {7^x}\).
Tìm nguyên hàm của hàm số \(f\left( x \right) = \cos 3x\).
Tìm nguyên hàm của hàm số \(f\left( x \right) = \sqrt {2x - 1} \).
Cho \(F(x)\) là một nguyên hàm của hàm số \(f\left( x \right) = {{\rm{e}}^x} + 2x\) thỏa mãn \(F\left( 0 \right) = \frac{3}{2}.\) Tìm \(F(x)\)
Cho \(\int\limits_{ - 1}^2 {f\left( x \right){\rm{d}}x} = 2\) và \(\int\limits_{ - 1}^2 {g\left( x \right){\rm{d}}x} = - 1\). Tính \(I = \int\limits_{ - 1}^2 {\left[ {x + 2f\left( x \right) - 3g\left( x \right)} \right]{\rm{d}}x} \)
Tìm nguyên hàm của hàm số \(f\left( x \right) = \frac{1}{{5x - 2}}\)
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^3} - x\) và đồ thị hàm số \(y = x - {x^2}\).
Cho \(\int\limits_0^{\frac{\pi }{2}} {f\left( x \right){\rm{d}}x} = 5\). Tính \(I = \int\limits_0^{\frac{\pi }{2}} {\left[ {f\left( x \right) + 2\sin x} \right]{\rm{d}}x} \).
Kí hiệu (H) là hình phẳng giới hạn bởi đồ thị hàm số \(y = 2\left( {x - 1} \right){{\rm{e}}^x}\), trục tung và trục hoành. Tính thể tích V của khối tròn xoay thu được khi quay hình (H) xung quanh trục Ox: