Câu hỏi Đáp án 2 năm trước 34

Tính: tổng S tất cả các giá trị tham số m để đồ thị hàm số \(f\left( x \right) = {x^3} - 3m{x^2} + 3mx + {m^2} - 2{m^3}\) tiếp xúc với trục hoành.

A. S = 1

B. S = 0

C. \(S = \frac{2}{3}\)

D. \(S = \frac{4}{3}\)

Đáp án chính xác ✅

Lời giải của giáo viên

verified HocOn247.com

Đồ thị hàm số \(y = {x^3} - 3m{x^2} + 3mx + {m^2} - 2{m^3}\) tiếp xúc với trục hoành

\( \Leftrightarrow \) hệ phương trình \(\left\{ \begin{array}{l}
{x^3} - 3m{x^2} + 3mx + {m^2} - 2{m^3} = 0\\
3{x^2} - 6mx + 3m = 0
\end{array} \right.\) có nghiệm

\( \Leftrightarrow \left\{ \begin{array}{l}
{x^3} - 3m{x^2} + 3mx + {m^2} - 2{m^3} = 0\,\,\,\left( 1 \right)\\
{x^2} - 2mx + m = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)
\end{array} \right.\) 

(2) có nghiệm \( \Leftrightarrow \Delta ' = {m^2} - m \ge 0 \Leftrightarrow \left[ \begin{array}{l}
m \ge 1\\
m \le 0
\end{array} \right.\) 

(2) \( \Leftrightarrow {x^2} = m\left( {2x - 1} \right)\) 

TH1: \(x = \frac{1}{2} \Leftrightarrow \frac{1}{4} = 0\) (vô lí)

TH2: \(x \ne \frac{1}{2} \Rightarrow m = \frac{{{x^2}}}{{2x - 1}}\) 

Thay vào (1) ta có: \({x^3} - 3\frac{{{x^2}}}{{2x - 1}}{x^2} + 3\frac{{{x^2}}}{{2x - 1}}x + {\left( {\frac{{{x^2}}}{{2x - 1}}} \right)^2} - 2{\left( {\frac{{{x^2}}}{{2x - 1}}} \right)^3} = 0\) 

\(\begin{array}{l}
 \Leftrightarrow \frac{{{x^3}}}{{{{\left( {2x - 1} \right)}^3}}}\left[ {{{\left( {2x - 1} \right)}^3} - 3x{{\left( {2x - 1} \right)}^2} + 3{{\left( {2x - 1} \right)}^2} + x\left( {2x - 1} \right) - 2{x^3}} \right] = 0\\
 \Leftrightarrow \left[ \begin{array}{l}
x = 0\\
8{x^3} - 12{x^2} + 6x - 1 - 12{x^3} + 12{x^2} - 3x + 12{x^2} - 12x + 3 + 2{x^2} - x - 2{x^3} = 0
\end{array} \right.\\
 \Leftrightarrow \left[ \begin{array}{l}
x = 0\\
 - 6{x^3} + 14{x^2} - 10x + 2 = 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = 0\\
x = \frac{1}{3} \Rightarrow S = 0 + \frac{1}{3} + 1 = \frac{4}{3}\\
x = 1
\end{array} \right.
\end{array}\) 

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho số thực a dương khác 1. Biết rằng bất kỳ đường thẳng nào song song với trục Ox mà cắt đường thẳng \(y = {4^x},y = {a^x}\), trục tung lần lượt tại M, N và A thì AN = 2AM. Giá trị của a bằng

Xem lời giải » 2 năm trước 51
Câu 2: Trắc nghiệm

Cho tứ diện ABCD có tam giác ABD đều là cạnh bằng 2, tam giác ABC vuông tại B, \(BC = \sqrt 3 \). Biết khoảng cách giữa hai đường thẳng chéo nhau AB và CD bằng \(\frac{{\sqrt {11} }}{2}\). Khi đó độ dài cạnh CD là

Xem lời giải » 2 năm trước 49
Câu 3: Trắc nghiệm

Cho mặt cầu (S) tâm I bán kính R. M là điểm thỏa mãn \(IM = \frac{{3R}}{2}\). Hai mặt phẳng (P), (Q) qua M và tiếp xúc với (S) lần lượt tại A và B. Biết góc giữa (P) và (Q) bằng \(60^0\). Độ dài đoạn thẳng AB bằng

Xem lời giải » 2 năm trước 46
Câu 4: Trắc nghiệm

Trong các hàm số sau, hàm số nào đồng biến trên R?

Xem lời giải » 2 năm trước 45
Câu 5: Trắc nghiệm

Đường tiệm cận đứng của đồ thị hàm số \(y = \frac{{x + 1}}{{x - 2}}\) là

Xem lời giải » 2 năm trước 45
Câu 6: Trắc nghiệm

Biết \(F\left( x \right) = \left( {a{x^2} + bx + c} \right){e^{ - x}}\) là một nguyên hàm của hàm số \(f\left( x \right) = \left( {2{x^2} - 5x + 2} \right){e^{ - x}}\) trên R. Giá trị của biểu thức \(f\left( {F\left( 0 \right)} \right)\) bằng

Xem lời giải » 2 năm trước 43
Câu 7: Trắc nghiệm

Cho tứ diện ABCD có AC = 3a, BD = 4a. Gọi M, N lần lượt là trung điểm của AD và BC. Biết AC vuông góc với BD. Tính MN

Xem lời giải » 2 năm trước 43
Câu 8: Trắc nghiệm

Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh bằng a, \(SA \bot \left( {ABC} \right)\), SA = 3a. Thể tích V của khối chóp S.ABCD là

Xem lời giải » 2 năm trước 43
Câu 9: Trắc nghiệm

Số có giá trị nguyên cảu tham số m thuộc đoạn [-2019;2] để phương trình \(\left( {x - 1} \right)\left[ {{{\log }_3}\left( {4x + 1} \right) + {{\log }_5}\left( {2x + 1} \right)} \right] = 2x - m\) có đúng hai nghiệm thực là

Xem lời giải » 2 năm trước 42
Câu 10: Trắc nghiệm

Cho hình lăng trụ tam giác đều ABC.A’B’C’ có cạnh đáy bằng a và \(AB' \bot BC'\). Tinh thể tích V của khối lăng trụ đã cho

Xem lời giải » 2 năm trước 42
Câu 11: Trắc nghiệm

Cho cấp số nhân \((u_n)\) có công bội dương và \({u_2} = \frac{1}{4},\,{u_4} = 4\). Giá trị của \(u_1\) là

Xem lời giải » 2 năm trước 41
Câu 12: Trắc nghiệm

Cho hình chóp S.ABCD có đáy hình vuông cạnh a. Cạnh bên \(SA = a\sqrt 6 \) và vuông góc với đáy (ABCD). Tính theo a diện tích mặt cầu ngoại tiếp khối chóp S.ABCD

Xem lời giải » 2 năm trước 41
Câu 13: Trắc nghiệm

Cho khối nón có bán kính đáy là r, chiều cao h. Thể tích V của khối nón đó là :

Xem lời giải » 2 năm trước 41
Câu 14: Trắc nghiệm

Cho hình lăng trụ đứng ABCD.A’B’C’D’ có đáy là hình thoi, biết AA’ = 4a; AC = 2a, BD = a. Thế tích V của khối lăng trụ là

Xem lời giải » 2 năm trước 40
Câu 15: Trắc nghiệm

Tập nghiệm S của bất phương trình \({\log _2}\left( {x - 1} \right) < 3\) là

Xem lời giải » 2 năm trước 39

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »