Câu hỏi Đáp án 2 năm trước 36

Trong không gian cho tam giác \(OIM\) vuông tại \(I,\) góc \(\angle IOM = {45^0}\) và cạnh \(IM = a.\) Khi quay tam giác \(OIM\) quanh cạnh góc vuông \(OI\) thì đường gấp khúc \(OMI\) tạo thành một hình nón tròn xoay. Tính diện tích xung quanh \({S_{xq}}\) của hình nón tròn xoay đó theo \(a.\) 

A. \({S_{xq}} = \pi {a^2}\sqrt 2 \) 

Đáp án chính xác ✅

B. \({S_{xq}} = \pi {a^2}\) 

C. \({S_{xq}} = \pi {a^2}\sqrt 3 \) 

D. \({S_{xq}} = \frac{{\pi {a^2}\sqrt 2 }}{2}\) 

Lời giải của giáo viên

verified HocOn247.com

Ta có \(\Delta OIM\) vuông tại \(I,\;\angle IOM = {45^0} \Rightarrow \Delta OIM\) vuông cân tại \(I.\)

Khi quay \(\Delta OIM\) quanh trục \(OI\) ta được hình nón có chiều cao \(OI = a,\;\) bán kính đáy \(IM = a\)  và đường sinh \(l = OM = a\sqrt 2 .\)

\( \Rightarrow {S_{xq}} = \pi rl = \pi a.a\sqrt 2  = \pi {a^2}\sqrt 2 .\) 

Chọn A.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Tìm điều kiện cần và đủ của \(a,\,\,b,\,\,c\) để phương trình \(a\sin x + b\cos x = c\) có nghiệm? 

Xem lời giải » 2 năm trước 49
Câu 2: Trắc nghiệm

Tìm giá trị thực của tham số \(m\) để hàm số \(y = {x^3} - 3{x^2} + mx\) đạt cực đại tại \(x = 0\) 

Xem lời giải » 2 năm trước 45
Câu 3: Trắc nghiệm

Tập tất cả giá trị của tham số \(m\) để hàm số \(y = {x^3} - 3m{x^2} + 3x + 1\) đồng biến trên \(\mathbb{R}\) là 

Xem lời giải » 2 năm trước 45
Câu 4: Trắc nghiệm

Tìm nghiệm của phương trình \({\sin ^4}x - {\cos ^4}x = 0\). 

Xem lời giải » 2 năm trước 43
Câu 5: Trắc nghiệm

Tìm số giá trị nguyên thuộc đoạn \(\left[ { - 2019;2019} \right]\) của tham số \(m\) để đồ thị hàm số \(y = \dfrac{{\sqrt {x - 3} }}{{{x^2} + x - m}}\) có đúng hai đường tiệm cận.

Xem lời giải » 2 năm trước 42
Câu 6: Trắc nghiệm

Hình vẽ bên là đồ thị của hàm số nào trong các hàm số dưới đây?

Xem lời giải » 2 năm trước 42
Câu 7: Trắc nghiệm

Tính tổng \(T\) của các giá trị nguyên của tham số \(m\) để phương trình \({e^x} + \left( {{m^2} - m} \right){e^{ - x}} = 2m\) có đúng hai nghiệm phân biệt nhỏ hơn \(\frac{1}{{\log e}}.\) 

Xem lời giải » 2 năm trước 42
Câu 8: Trắc nghiệm

Gọi \(l,h,\,r\) lần lượt là độ dài đường sinh, chiều cao và bán kính mặt đáy của một hình nón. Tính diện tích xung quanh \({S_{xq}}\) của hình nón đó theo  \(l,h,\,r\). 

Xem lời giải » 2 năm trước 41
Câu 9: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ. Mệnh đề nào sau đây SAI?

Xem lời giải » 2 năm trước 41
Câu 10: Trắc nghiệm

Cho hình chóp \(S.ABCD\) có đường thẳng \(SA\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\) , đáy \(ABCD\) là hình thang vuông tại \(A\) và \(B\) , có \(AB = a,\,AD = 2a,BC = a.\) Biết rằng \(SA = a\sqrt 2 .\) Tính thể tích \(V\) của khối chóp \(S.BCD\) theo \(a.\) 

Xem lời giải » 2 năm trước 40
Câu 11: Trắc nghiệm

Cho hàm số \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = \frac{{2\cos x - 1}}{{{{\sin }^2}x}}\) trên khoảng \(\left( {0;\pi } \right).\) Biết rằng giá trị lớn nhất của \(F\left( x \right)\) trên khoảng \(\left( {0;\pi } \right)\) là \(\sqrt 3 \). Chọn mệnh đề đúng trong các mệnh đề sau? 

Xem lời giải » 2 năm trước 40
Câu 12: Trắc nghiệm

Gọi \(m\) và \(M\) lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số \(y = x - \sqrt {4 - {x^2}} \). Tính tổng \(M + m\). 

Xem lời giải » 2 năm trước 39
Câu 13: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như bên dưới. Mệnh đề nào dưới đây Sai?

Xem lời giải » 2 năm trước 39
Câu 14: Trắc nghiệm

Tính giới hạn \(L = \lim \dfrac{{{n^3} - 2n}}{{3{n^2} + n - 2}}\). 

Xem lời giải » 2 năm trước 39
Câu 15: Trắc nghiệm

Cho hình lập phương \(ABCD.A'B'C'D'.\) Biết tích của khoảng cách từ điểm \(B'\) và điểm \(D\) đến mặt phẳng \(\left( {D'AC} \right)\) bằng \(6{a^2}\left( {a > 0} \right)\) . Giả sử thể tích của khối lập phương \(ABCD.A'B'C'D'\) là \(k{a^3}.\) Chọn mệnh đề đúng trong các mệnh đề sau.

Xem lời giải » 2 năm trước 39

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »