Trong không gian Oxyz, cho điểm \(M\left( 1;1;1 \right)\). Mặt phẳng \(\left( P \right)\) đi qua M và cắt chiều dương của các trục Ox,Oy,Oz lần lượt tại các điểm \(A\left( a;0;0 \right),B\left( 0;b;0 \right),C\left( 0;0;c \right)\) thỏa mãn OA=2OB và thể tích khối tứ diện OABC đạt giá trị nhỏ nhất. Tính S=2a+b+3c.
A. \(\frac{81}{16}\)
B. 3
C. \(\frac{45}{2}\)
D. \(\frac{81}{4}\)
Lời giải của giáo viên
Phương trình mặt phẳng \(\left( P \right)\) đi qua \(A\left( a;0;0 \right),B\left( 0;b;0 \right),C\left( 0;0;c \right)\) có dạng \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1.\)
Vì \(\left( P \right)\) đi qua M nên \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1.\)
Mặt khác OA=2OB nên a=2b nên \(\frac{3}{2b}+\frac{1}{c}=1.\)
Thể tích khối tứ diện OABC là \(V=\frac{1}{6}abc=\frac{1}{3}{{b}^{2}}c.\)
Ta có \(\frac{3}{2b}+\frac{1}{c}=\frac{3}{4b}+\frac{3}{4b}+\frac{1}{c}\ge 3\sqrt[3]{\frac{9}{16{{b}^{2}}c}}\Rightarrow \sqrt[3]{\frac{9}{16{{b}^{2}}c}}\le \frac{1}{3}\Rightarrow \frac{16{{b}^{2}}c}{9}\ge 27\Rightarrow V=\frac{{{b}^{2}}c}{3}\ge \frac{81}{16}.\)
\(\Rightarrow \min V=\frac{81}{16} \ khi \ \left\{ \begin{align} & \frac{3}{4b}=\frac{1}{c}=\frac{1}{3} \\ & a=2b \\ \end{align} \right.\)\(\Rightarrow \left\{ \begin{align} & a=\frac{9}{2} \\ & b=\frac{9}{4} \\ & c=3 \\ \end{align} \right..\)
Vậy \(S=2a+b+3c=\frac{81}{4}.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x-2y+2z-1=0\). Khoảng cách từ điểm \(A\left( 1;-2;1 \right)\) đến mặt phẳng \(\left( P \right)\) bằng
Cho hình thang ABCD vuông tại A và D, AD=CD=a, AB=2a. Quay hình thang ABCD quanh cạnh AB, thể tích khối tròn xoay thu được là :
Cho số phức z có \(\left| z \right|=2\) thì số phức \(\text{w}=z+3i\) có modun nhỏ nhất và lớn nhất lần lượt là:
Tìm các giá trị của tham số m để hàm số \(y=\frac{1}{2}\ln \left( {{x}^{2}}+4 \right)-mx+3\) nghịch biến trên khoảng \(\left( -\infty ;+\infty \right)\).
Cho hai số phức z1 = 1+i và z2 = 2-3i. Tính mô đun của số phức z1 + z2
Họ nguyên hàm của hàm số \(f(x)=\frac{x+3}{{{x}^{2}}+3\text{x}+2}\) là:
Trong không gian \(Oxyz\), cho đường thẳng \(d:\frac{x+1}{1}=\frac{z-1}{-1}=\frac{y-3}{2}\). Một vectơ chỉ phương của \(d\) là
Cho hàm số \(f\left( x \right)={{x}^{3}}+a{{x}^{2}}+bx+c\) thỏa mãn c>2019, a+b+c-2018<0. Số điểm cực trị của hàm số \(y=\left| f(x)-2019 \right|\) là
Cho hàm số \(y=f(x)\) có bảng biến thiên như hình bên.
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Cho không gian Oxyz, cho điểm \(A\left( 0;1;2 \right)\) và hai đường thẳng \({{d}_{1}}:\left\{ \begin{align} & x=1+t \\ & y=-1-2t \\ & z=2+t \\ \end{align} \right.\), \({{d}_{2}}:\frac{x}{2}=\frac{y-1}{1}=\frac{z+1}{-1}\). Viết phương trình mặt phẳng \(\left( \alpha \right)\) đi qua A và song song với hai đường thẳng \({{d}_{1}},{{d}_{2}}\).
Cho hàm số \(y=f\left( x \right)\) và \(y=g\left( x \right)\) liên tục trên đoạn \(\left[ 1;5 \right]\) sao cho \(\int\limits_{1}^{5}{f\left( x \right)\text{d}x}=2\) và \(\int\limits_{1}^{5}{g\left( x \right)\text{d}x}=-4\). Giá trị của \(\int\limits_{1}^{5}{\left[ g\left( x \right)-f\left( x \right) \right]\text{d}x}\) là
Cho hàm số bậc bốn \(y=f\left( x \right)\) có đồ thị như hình dưới đây. Số nghiệm của phương trình \(3f\left( x \right)+1=0\) là
Trong hình dưới đây, điểm \(B\) là trung điểm của đoạn thẳng AC. Khẳng định nào sau đây là đúng?
Cho hình lăng trụ \(ABC.{A}'{B}'{C}'\) và M, N là hai điểm lần lượt trên cạnh CA, CB sao cho MN song song với AB và \(\frac{CM}{CA}=k\). Mặt phẳng \(\left( MN{B}'{A}' \right)\) chia khối lăng trụ \(ABC.{A}'{B}'{C}'\) thành hai phần có thể tích \({{V}_{1}}\) (phần chứa điểm C) và \({{V}_{2}}\) sao cho \(\frac{{{V}_{1}}}{{{V}_{2}}}=2\). Khi đó giá trị của k là
Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y = x\left( {2017 + \sqrt {2019 – {x^2}} } \right)\) trên tập xác định của nó. Tính M – m.