Lời giải của giáo viên
Ta có \(d\left( A,\left( P \right) \right)=\frac{\left| 1-2.\left( -2 \right)+2.1-1 \right|}{\sqrt{{{1}^{2}}+{{\left( -2 \right)}^{2}}+{{2}^{2}}}}=2\).
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm các giá trị của tham số m để hàm số \(y=\frac{1}{2}\ln \left( {{x}^{2}}+4 \right)-mx+3\) nghịch biến trên khoảng \(\left( -\infty ;+\infty \right)\).
Cho hình thang ABCD vuông tại A và D, AD=CD=a, AB=2a. Quay hình thang ABCD quanh cạnh AB, thể tích khối tròn xoay thu được là :
Cho số phức z có \(\left| z \right|=2\) thì số phức \(\text{w}=z+3i\) có modun nhỏ nhất và lớn nhất lần lượt là:
Trong không gian \(Oxyz\), cho đường thẳng \(d:\frac{x+1}{1}=\frac{z-1}{-1}=\frac{y-3}{2}\). Một vectơ chỉ phương của \(d\) là
Họ nguyên hàm của hàm số \(f(x)=\frac{x+3}{{{x}^{2}}+3\text{x}+2}\) là:
Cho hàm số \(y=f\left( x \right)\) và \(y=g\left( x \right)\) liên tục trên đoạn \(\left[ 1;5 \right]\) sao cho \(\int\limits_{1}^{5}{f\left( x \right)\text{d}x}=2\) và \(\int\limits_{1}^{5}{g\left( x \right)\text{d}x}=-4\). Giá trị của \(\int\limits_{1}^{5}{\left[ g\left( x \right)-f\left( x \right) \right]\text{d}x}\) là
Cho hai số phức z1 = 1+i và z2 = 2-3i. Tính mô đun của số phức z1 + z2
Cho hàm số \(f\left( x \right)={{x}^{3}}+a{{x}^{2}}+bx+c\) thỏa mãn c>2019, a+b+c-2018<0. Số điểm cực trị của hàm số \(y=\left| f(x)-2019 \right|\) là
Trong không gian Oxyz, cho điểm \(M\left( 1;1;1 \right)\). Mặt phẳng \(\left( P \right)\) đi qua M và cắt chiều dương của các trục Ox,Oy,Oz lần lượt tại các điểm \(A\left( a;0;0 \right),B\left( 0;b;0 \right),C\left( 0;0;c \right)\) thỏa mãn OA=2OB và thể tích khối tứ diện OABC đạt giá trị nhỏ nhất. Tính S=2a+b+3c.
Cho không gian Oxyz, cho điểm \(A\left( 0;1;2 \right)\) và hai đường thẳng \({{d}_{1}}:\left\{ \begin{align} & x=1+t \\ & y=-1-2t \\ & z=2+t \\ \end{align} \right.\), \({{d}_{2}}:\frac{x}{2}=\frac{y-1}{1}=\frac{z+1}{-1}\). Viết phương trình mặt phẳng \(\left( \alpha \right)\) đi qua A và song song với hai đường thẳng \({{d}_{1}},{{d}_{2}}\).
Tìm số giá trị nguyên thuộc đoạn \(\left[ -2019\,;2019 \right]\) của tham số \(m\) để đồ thị hàm số \(y=\frac{\sqrt{x-3}}{{{x}^{2}}+x-m}\) có đúng hai đường tiệm cận.
Cho hàm số bậc bốn \(y=f\left( x \right)\) có đồ thị như hình dưới đây. Số nghiệm của phương trình \(3f\left( x \right)+1=0\) là
Cho hàm số \(y=f(x)\) có bảng biến thiên như hình bên.
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Trong hình dưới đây, điểm \(B\) là trung điểm của đoạn thẳng AC. Khẳng định nào sau đây là đúng?
Cho hình lăng trụ \(ABC.{A}'{B}'{C}'\) và M, N là hai điểm lần lượt trên cạnh CA, CB sao cho MN song song với AB và \(\frac{CM}{CA}=k\). Mặt phẳng \(\left( MN{B}'{A}' \right)\) chia khối lăng trụ \(ABC.{A}'{B}'{C}'\) thành hai phần có thể tích \({{V}_{1}}\) (phần chứa điểm C) và \({{V}_{2}}\) sao cho \(\frac{{{V}_{1}}}{{{V}_{2}}}=2\). Khi đó giá trị của k là