Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y = x\left( {2017 + \sqrt {2019 – {x^2}} } \right)\) trên tập xác định của nó. Tính M – m.
A. \(2019\sqrt {2019} + 2017\sqrt {2017}\)
B. 4036
C. \(4036\sqrt {2018} \)
D. \(\sqrt {2019} + \sqrt {2017}\)
Lời giải của giáo viên
TXĐ: \(D = \left[ { – \sqrt {2019} ;\sqrt {2019} } \right]\)
Ta có \(y’ = 2017 + \sqrt {2019 – {x^2}} – \frac{{{x^2}}}{{\sqrt {2019 – {x^2}} }}\)
\( \Rightarrow y’ = 0 \Leftrightarrow 2017 + \sqrt {2019 – {x^2}} – \frac{{{x^2}}}{{\sqrt {2019 – {x^2}} }} = 0 \Leftrightarrow \frac{{2017\sqrt {2019 – {x^2}} + 2019 – 2{x^2}}}{{\sqrt {2019 – {x^2}} }} = 0\)
Trên D, đặt \(t = \sqrt {2019 – {x^2}} , t \ge 0\). Ta được:
\(2{t^2} + 2017t – 2019 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 1\\t = – \frac{{2019}}{2}\end{array} \right. \Rightarrow \sqrt {2019 – {x^2}} = 1 \Leftrightarrow \left[ \begin{array}{l}x = – \sqrt {2018} \\x = \sqrt {2018} \end{array} \right.\)
Khi đó \(f\left( { – \sqrt {2018} } \right) = – 2018\sqrt {2018} ; f\left( {\sqrt {2018} } \right) = 2018\sqrt {2018}\)
\(f\left( { – \sqrt {2019} } \right) = – 2017\sqrt {2019} ; f\left( {\sqrt {2019} } \right) = 2017\sqrt {2019} \)
Suy ra \(m = \mathop {\min y}\limits_D = – 2018\sqrt {2018} , M = \mathop {\max y}\limits_D = 2018\sqrt {2018} \)
Vậy \(M – m = 4036\sqrt {2018} .\)
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x-2y+2z-1=0\). Khoảng cách từ điểm \(A\left( 1;-2;1 \right)\) đến mặt phẳng \(\left( P \right)\) bằng
Cho hình thang ABCD vuông tại A và D, AD=CD=a, AB=2a. Quay hình thang ABCD quanh cạnh AB, thể tích khối tròn xoay thu được là :
Tìm các giá trị của tham số m để hàm số \(y=\frac{1}{2}\ln \left( {{x}^{2}}+4 \right)-mx+3\) nghịch biến trên khoảng \(\left( -\infty ;+\infty \right)\).
Cho số phức z có \(\left| z \right|=2\) thì số phức \(\text{w}=z+3i\) có modun nhỏ nhất và lớn nhất lần lượt là:
Trong không gian \(Oxyz\), cho đường thẳng \(d:\frac{x+1}{1}=\frac{z-1}{-1}=\frac{y-3}{2}\). Một vectơ chỉ phương của \(d\) là
Cho hàm số \(f\left( x \right)={{x}^{3}}+a{{x}^{2}}+bx+c\) thỏa mãn c>2019, a+b+c-2018<0. Số điểm cực trị của hàm số \(y=\left| f(x)-2019 \right|\) là
Cho hai số phức z1 = 1+i và z2 = 2-3i. Tính mô đun của số phức z1 + z2
Cho hàm số \(y=f\left( x \right)\) và \(y=g\left( x \right)\) liên tục trên đoạn \(\left[ 1;5 \right]\) sao cho \(\int\limits_{1}^{5}{f\left( x \right)\text{d}x}=2\) và \(\int\limits_{1}^{5}{g\left( x \right)\text{d}x}=-4\). Giá trị của \(\int\limits_{1}^{5}{\left[ g\left( x \right)-f\left( x \right) \right]\text{d}x}\) là
Họ nguyên hàm của hàm số \(f(x)=\frac{x+3}{{{x}^{2}}+3\text{x}+2}\) là:
Cho không gian Oxyz, cho điểm \(A\left( 0;1;2 \right)\) và hai đường thẳng \({{d}_{1}}:\left\{ \begin{align} & x=1+t \\ & y=-1-2t \\ & z=2+t \\ \end{align} \right.\), \({{d}_{2}}:\frac{x}{2}=\frac{y-1}{1}=\frac{z+1}{-1}\). Viết phương trình mặt phẳng \(\left( \alpha \right)\) đi qua A và song song với hai đường thẳng \({{d}_{1}},{{d}_{2}}\).
Trong không gian Oxyz, cho điểm \(M\left( 1;1;1 \right)\). Mặt phẳng \(\left( P \right)\) đi qua M và cắt chiều dương của các trục Ox,Oy,Oz lần lượt tại các điểm \(A\left( a;0;0 \right),B\left( 0;b;0 \right),C\left( 0;0;c \right)\) thỏa mãn OA=2OB và thể tích khối tứ diện OABC đạt giá trị nhỏ nhất. Tính S=2a+b+3c.
Tìm số giá trị nguyên thuộc đoạn \(\left[ -2019\,;2019 \right]\) của tham số \(m\) để đồ thị hàm số \(y=\frac{\sqrt{x-3}}{{{x}^{2}}+x-m}\) có đúng hai đường tiệm cận.
Cho hàm số bậc bốn \(y=f\left( x \right)\) có đồ thị như hình dưới đây. Số nghiệm của phương trình \(3f\left( x \right)+1=0\) là
Trong hình dưới đây, điểm \(B\) là trung điểm của đoạn thẳng AC. Khẳng định nào sau đây là đúng?
Cho hàm số \(y=f(x)\) có bảng biến thiên như hình bên.
Hàm số đã cho đồng biến trên khoảng nào dưới đây?