Trong không gian Oxyz, cho điểm \(A(1\,;\,-1\,;\,3)\) và hai đường thẳng \({{d}_{1}}:\frac{x-4}{1}=\frac{y+2}{4}=\frac{z-1}{-2}, {{d}_{2}}:\frac{x-2}{1}=\frac{y+1}{-1}=\frac{z-1}{1}\). Viết phương trình đường thẳng d đi qua A,vuông góc với đường thẳng \({{d}_{1}}\) và cắt đường thẳng \({{d}_{2}}\).
A. \(\frac{{x - 1}}{2} = \frac{{y + 1}}{{ - 1}} = \frac{{z - 3}}{{ - 1}}\)
B. \(\frac{{x - 1}}{6} = \frac{{y + 1}}{1} = \frac{{z - 3}}{5}\)
C. \(\frac{{x - 1}}{6} = \frac{{y + 1}}{{ - 4}} = \frac{{z - 3}}{{ - 1}}\)
D. \(\frac{{x - 1}}{2} = \frac{{y + 1}}{1} = \frac{{z - 3}}{3}\)
Lời giải của giáo viên
Ta có \({{\vec{u}}_{{{d}_{1}}}}=\left( 1;4;-2 \right)\) là vectơ chỉ phương của \({{d}_{1}}.\)
Gọi \(M=d\cap {{d}_{2}}\Rightarrow M\left( 2+t\,;\,-1-t\,;\,1+t \right)\Rightarrow \overrightarrow{AM}=\left( 1+t\,;\,-t\,;\,t-2 \right).\)
Theo đề bài d vuông góc \({{d}_{1}}\Rightarrow {{\vec{u}}_{{{d}_{1}}}}.\overrightarrow{AM}=0\Leftrightarrow 1.\left( 1+t \right)+4\left( -t \right)-2\left( t-2 \right)=0\Leftrightarrow t=1.\)
\(\Rightarrow {{\vec{u}}_{d}}=\overrightarrow{AM}=\left( 2\,;\,-1\,;\,-1 \right)\) là vectơ chỉ phương của d.
Vậy phương trình đường thẳng d: \(\frac{x-1}{2}=\frac{y+1}{-1}=\frac{z-3}{-1}.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Với a là số thực dương tùy ý, \(\sqrt[3]{{{a}^{4}}}\) bằng:
Cho cấp số cộng \(\left( {{u}_{n}} \right)\) có \({{u}_{1}}=5\) và \({{u}_{2}}=8\). Giá trị của \({{u}_{3}}\) bằng
Cho hàm số \(f\left( x \right)\) bảng xét dấu của \(f'\left( x \right)\) như sau:
Số điểm cực trị của hàm số đã cho là
Cho hàm số bậc ba \(y=f\left( x \right)\) có đồ thị như hình vẽ, biết \(f\left( x \right)\) đạt cực tiểu tại điểm x=1 và thỏa mãn \(\left[ f\left( x \right)+1 \right]\) và \(\left[ f\left( x \right)-1 \right]\) lần lượt chia hết cho \({{\left( x-1 \right)}^{2}}\) và \({{\left( x+1 \right)}^{2}}\). Gọi \({{S}_{1}},{{S}_{2}}\) lần lượt là diện tích như trong hình bên. Tính \(2{{S}_{2}}+8{{S}_{1}}\).
Một khối chóp có thể tích là \(36{{a}^{3}}\) và diện tích mặt đáy là \(9{{a}^{2}}\). Chiều cao của khối chóp đó bằng
Cho hàm số \(f\left( x \right)=4{{x}^{3}}+{{e}^{x}}-1\). Trong các khẳng định sau, khẳng định nào đúng
Một hình nón có đường kính đáy là 6cm, độ dài đường sinh là 3cm. Diện tích xung quanh của hình nón đó bằng
Cho hàm số \(f\left( x \right)\), đồ thị của hàm số \(y=f'\left( x \right)\) là đường cong trong hình bên. Giá trị lớn nhất của hàm số \(g\left( x \right)=f\left( x+2 \right)-x\) trên đoạn \(\left[ -3\,;\,0 \right]\) bằng
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) có \(f\left( 0 \right)=1\) và đồ thị hàm số \(y=f'\left( x \right)\) như hình vẽ.
Hàm số \(y=\left| f\left( 3x \right)-9{{x}^{3}}-1 \right|\) đồng biến trên khoảng
Cho hình hộp chữ nhật \(ABCD{A}'{B}'{C}'{D}'\) có \(AB=3a\,;\,A{A}'=4a\) (như hình vẽ). Tính khoảng cách từ điểm B đến mặt phẳng \(\left( AD{C}'{B}' \right)\).
Trong không gian Oxyz, cho mặt cầu có phương trình \({{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x+4y+2z-1=0\). Bán kính của mặt cầu là
Công thức tính thể tích khối trụ có chiều cao h và bán kính đáy r là:
Nghiệm của phương trình \({3^{{x^2} - 3x + 1}} = \frac{1}{3}\) là:
Có bao nhiêu số phức z thỏa mãn điều kiện \(\left| z-3i \right|=5\) và \(\frac{z}{z-4}\) là số thuần ảo?