Trong không gian Oxyz, cho đường thẳng d đi qua điểm M(2;2;1) và có một vecto chỉ phương \(\overrightarrow{u}=(5;2;-3)\). Phương trình của d là:
A.
\(\left\{ \begin{array}{l} x = 5 + 2t\\ y = 2 + 2t\\ z = - 3 + t \end{array} \right.\)
B. \(\left\{ \begin{array}{l} x = 2 + 5t\\ y = 2 + 2t\\ z = 1 - 3t \end{array} \right.\)
C. \(\left\{ \begin{array}{l} x = 2 + 5t\\ y = 2 + 2t\\ z = - 1 - 3t \end{array} \right.\)
D. \(\left\{ \begin{array}{l} x = 2 + 5t\\ y = 2 + 2t\\ z = 1 + 3t \end{array} \right.\)
Lời giải của giáo viên
Đường thẳng đi qua điểm M(2;2;1) và có một vecto chỉ phương \(\overrightarrow{u}=(5;2;-3)\). Phương trình của d là: \(\left\{ \begin{array}{l} x = 2 + 5t\\ y = 2 + 2t\\ z = 1 - 3t \end{array} \right.\)
Chọn B
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình chóp S.ABC có đáy là tam giác vuông cân tại C, AC = 3a và SA vuông gốc với mặt phẳng đáy. Khoảng cách từ B đến mặt phẳng (SAC) bằng
Cho hàm số y = f(x) có bảng xét dấu của đạo hàm như sau:
Số điểm cực trị của hàm số đã cho là:
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên
Có bao nhiêu số nguyên x thỏa mãn \(\left( {{3}^{{{x}^{2}}}}-{{9}^{x}} \right)\left[ {{\log }_{2}}(x+30)-5 \right]\le 0\)?
Với n là số nguyên dương bất kì, n ≥ 5, công thức nào dưới đây đúng
Trong không gian Oxyz, cho đường thẳng \(d:\frac{x+1}{1}=\frac{y}{1}=\frac{z-1}{2}\) và mặt phẳng (P): 2x + y – z + 3 = 0. Hình chiếu vuông góc của d lên (P) là đường thẳng có phương trình:
Cho hai số phức z = 5 + 2i và w = 1 - 4i. Số phức z + w bằng
Cho khối chóp có diện tích đáy B = 3a2 và chiều cao h = a. Thể tích của khối chóp đã cho bằng
Nếu \(\int\limits_{0}^{3}{f(x)dx=3}\) thì \(\int\limits_{0}^{3}{2f(x)dx}\) bằng
\(f(x) = \left\{ \begin{array}{l} 2x - 1\;\;\;\;\;\;\;khi\;\;\;\;x \ge 1\\ 3{x^2} - 2\;\;\;\;khi\;\;\;\;x < 1 \end{array} \right.\). Giả sử F là nguyên hàm của f trên R thỏa mãn F(0)=2. Giá trị của F(-1) + 2F(2) bằng
Trong không gian Oxyz, cho mặt phẳng (P): -2x+5y+z-3=0. Vec tơ nào dưới đây là một vec tơ pháp tuyển của (P)?