Trong không gian Oxyz, cho đường thẳng \(\left( d \right):\frac{x-1}{1}=\frac{y-1}{-1}=\frac{z}{3}\) và mặt phẳng \(\left( P \right):x+3y+z=0\). Đường thẳng \(\left( \Delta\right)\) đi qua \(M\left( 1;1;2 \right)\), song song với mặt phẳng \(\left( P \right)\) đồng thời cắt đường thẳng \(\left( d \right)\) có phương trình là
A. \(\frac{{x - 3}}{1} = \frac{{y + 1}}{{ - 1}} = \frac{{z - 9}}{2}\)
B. \(\frac{{x + 2}}{1} = \frac{{y + 1}}{{ - 1}} = \frac{{z - 6}}{2}\)
C. \(\frac{{x - 1}}{{ - 1}} = \frac{{y - 1}}{2} = \frac{{z - 2}}{1}\)
D. \(\frac{{x - 1}}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{z - 2}}{2}\)
Lời giải của giáo viên
Phương trình tham số của \(\left( d \right):\left\{ \begin{align} & x=1+t \\ & y=1-t \\ & z=3t \\ \end{align} \right.,\,t\in \mathbb{R}\).
Mặt phẳng \(\left( P \right)\) có véc tơ pháp tuyến \(\overrightarrow{n}=\left( 1;3;1 \right)\)
Giả sử \(\Delta \cap d=A\left( 1+t;1-t;3t \right)\)
\(\Rightarrow \overrightarrow{MA}=\left( t;-t;3t-2 \right)\) là véc tơ chỉ phương của \(\Delta \Rightarrow \overrightarrow{MA}.\overrightarrow{n}=0\Leftrightarrow t-3t+3t-2=0\Leftrightarrow t=2\).
\(\Rightarrow \overrightarrow{MA}=\left( 2;-2;4 \right)=2\left( 1;-1;2 \right)\).
Vậy phương trình đường thẳng \(\Delta :\frac{x-1}{1}=\frac{y-1}{-1}=\frac{z-2}{2}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y=h\left( x \right)\) có bảng biến thiên sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
Tìm các khoảng đồng biến của hàm số \(y={{x}^{3}}+3{{x}^{2}}+1\).
Gọi \(\left( H \right)\) là hình phẳng giới hạn bởi đồ thị hàm số: \(y={{x}^{2}}-4x+4\), trục tung và trục hoành. Xác định k để đường thẳng \(\left( d \right)\) đi qua điểm \(A\left( 0;4 \right)\) có hệ số góc k chia \(\left( H \right)\) thành hai phần có diện tích bằng nhau.
Gieo một con súc sắc ba lần. Xác suất để được mặt số hai xuất hiện cả ba lần là.
Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt cầu (S) có tâm \(I(\left( 1;-2;3 \right)\) và \(\left( S \right)\) đi qua điểm \(A\left( 3;0;2 \right)\).
Tổng bình phương các nghiệm của phương trình \({\log _{\frac{1}{2}}}\left( {{x^2} - 5x + 7} \right) = 0\) bằng
Cho \(\int\limits_{0}^{\frac{\pi }{4}}{\frac{\sqrt{2+3\tan x}}{1+\cos 2x}dx=a\sqrt{5}+b\sqrt{2},\,\,}\) với \(a,\,\,b\in \mathbb{R}.\) Tính giá trị biểu thức A=a+b.
Cho hình chóp S.ABC có SA=SB=CB=CA, hình chiếu vuông góc của S lên mặt phẳng \(\left( ABC \right)\) trùng với trung điểm I của cạnh AB. Góc giữa đường thẳng SC và mặt phẳng \(\left( ABC \right)\) bằng.
Đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y=\frac{1-x}{-x+2}\) có phương trình lần lượt là
Số giao điểm của đồ thị hàm số \(y=\frac{x+1}{x-1}\) và đường thẳng y=2 là
Trong không gian với hệ tọa độ Oxyz, viết phương trình tham số của đường thẳng \(\Delta :\frac{x-4}{1}=\frac{y+3}{2}=\frac{z-2}{-1}.\)
Nguyên hàm của hàm số \(f\left( x \right)=\cos 6x\) là
Một khối lăng trụ có chiều cao bằng 2a và diện tích đáy bằng \(2{{a}^{2}}\). Tính thể tích khối lăng trụ
Cho hai số phức \({{z}_{1}}=3-i\) và \({{z}_{2}}=-1+i\). Phần ảo của số phức \({{z}_{1}}{{z}_{2}}\) bằng