Trong không gian Oxyz, cho hai điểm \(A\left( 3;4;2 \right),\text{ }B\left( -1;-2;2 \right)\) và \(G\left( 1;1;3 \right)\) là trọng tâm của tam giác ABC. Tọa độ điểm C là?
A. \(C\left( {1;3;2} \right)\)
B. \(C\left( {1;1;5} \right)\)
C. \(C\left( {0;1;2} \right)\)
D. \(C\left( {0;0;2} \right)\)
Lời giải của giáo viên
Do G là trọng tâm của tam giác ABC nên ta có
\(\left\{ \begin{array}{l} {x_G} = \frac{{{x_A} + {x_B} + {x_C}}}{3}\\ {y_G} = \frac{{{y_A} + {y_B} + {y_C}}}{3}\\ {z_G} = \frac{{{z_A} + {z_B} + {z_C}}}{3} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} {x_C} = 3{x_G} - {x_A} - {x_B} = 1\\ {y_C} = 3{y_G} - {y_A} - {y_B} = 1\\ {z_C} = 3{z_G} - {z_A} - {z_B} = 5 \end{array} \right. \Rightarrow C\left( {1;1;5} \right)\)
CÂU HỎI CÙNG CHỦ ĐỀ
Nếu \(\int\limits_{0}^{\frac{\pi }{3}}{\left[ \sin x-3f\left( x \right) \right]}\text{d}x=6\) thì \(\int\limits_{0}^{\frac{\pi }{3}}{f\left( x \right)}\text{d}x\) bằng
Cho số phức z=5-3i. Môđun của số phức \(\left( 1-2i \right)\left( \overline{z}-1 \right)\) bằng
Chọn ngẫu nhiên một số trong 18 số nguyên dương đầu tiên. Xác suất để chọn được số lẻ bằng
Cho hàm số \(f\left( x \right)\) thỏa mãn \(\int\limits_{1}^{2}{f\left( x \right)}\text{d}x=1\) và \(\int\limits_{1}^{4}{f\left( t \right)}\text{d}t=-3\). Tính tích phân \(I=\int\limits_{2}^{4}{f\left( u \right)}\text{d}u\).
Diện tích xung quanh của hình trụ có bán kính đáy R, chiều cao h là
Có bao nhiêu cách xếp 4 học sinh thành một hàng dọc?
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) thỏa mãn \(xf\left( {{x}^{2}} \right)-f\left( 2x \right)=2{{x}^{3}}+2x,\,\,\,\forall x\in \mathbb{R}\). Tính giá trị \(I=\int\limits_{1}^{2}{f\left( x \right)\text{d}x}\).
Cho tam giác ABC vuông tại A có \(AB=\sqrt{3}\) và AC=3. Thể tích V của khối nón nhận được khi quay tam giác ABC quanh cạnh AC là
Trong không gian \(Oxyz\), điểm nào sau đây thuộc trục \(Oz\)?
Với m là tham số thực, ta có \(\int\limits_{1}^{2}{\text{(}2mx+1)\text{d}x}=4.\) Khi đó m thuộc tập hợp nào sau đây?
Cho khối lăng trụ tam giác đều có cạnh đáy bằng a và cạnh bên bằng \(a\sqrt{3}\). Tính thể tích khối lăng trụ đó theo a.
Cho hàm số \(y=f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\). Đồ thị hàm số \(y={f}'\left( x \right)\) như hình bên. Đặt \(g\left( x \right)=2f\left( x \right)+{{x}^{2}}+3\). Khẳng định nào sau đây là đúng?
Cho khối lăng trụ đứng \(ABC.{A}'{B}'{C}'\) có \({B}'B=a\), đáy ABC là tam giác vuông cân tại B và \(AC=a\sqrt{3}\). Tính \(\tan \) góc giữa \({C}'A\) và mp \(\left( ABC \right)\)
Chọn ngẫu nhiên một số từ tập các số tự nhiên có ba chữ số đôi một khác nhau. Gọi S là tích các chữ số được chọn. Xác suất để S>0 và chia hết cho 6 bằng
Cho hai số phức \({{z}_{1}}=1+i\) và \({{z}_{2}}=2+i\). Trên mặt phẳng Oxy, điểm biểu diễn số phức \({{z}_{1}}+2{{z}_{2}}\) có toạ độ là: