Trong không gian Oxyz, lấy điểm C trên tia Oz sao cho OC = 1. Trên hai tia Ox, Oy lần lượt lấy hai điểm A, B thay đổi sao cho OA+OB = OC. Tìm giá trị nhỏ nhất của bán kính mặt cầu ngoại tiếp tứ diện O.ABC?
A. \(\frac{{\sqrt 6 }}{4}.\)
B. \(\sqrt 6 .\)
C. \(\frac{{\sqrt 6 }}{3}.\)
D. \(\frac{{\sqrt 6 }}{2}.\)
Lời giải của giáo viên
Giả sử \(A\left( {a;0;0} \right),\,\,B\left( {0;b;0} \right) \Rightarrow OA = \left| a \right|,OB = \left| b \right|\).
Tứ diện OABC có OA, OB, OC đôi một vuông góc.
Gọi M, N lần lượt là trung điểm của AB và OC.
Ta có \(\left\{ \begin{array}{l}
OC \bot OA\\
OC \bot OB
\end{array} \right. \Rightarrow OC \bot \left( {OAB} \right)\)
Qua M dựng đường thẳng song song với OC, qua N dựng đường thẳng
song song với OM. Hai đường thẳng này cắt nhau tại I.
\(\Delta OAB\) vuông tại \(O \Rightarrow M\) là tâm đường tròn ngoại tiếp \(\Delta OAB \Rightarrow IO = IA = IB\).
\(I \in IN \Rightarrow IO = IC \Rightarrow IO = IA = IB = IC \Rightarrow I\) là tâm mặt cầu ngoại tiếp O.ABC
Ta có \(OM = \frac{1}{2}AB = \frac{1}{2}\sqrt {{a^2} + {b^2}} \)
\(\begin{array}{l}
R = OI = \sqrt {I{M^2} + O{M^2}} = \sqrt {\frac{{{c^2}}}{4} + \frac{{{a^2} + {b^2}}}{4}} = \frac{{\sqrt {{a^2} + {b^2} + {c^2}} }}{2}\frac{{\sqrt {{a^2} + \left( {1 - {a^2}} \right) + 1} }}{2} = \frac{{\sqrt {2{a^2} - 2a + 2} }}{2}\\
\,\,\,\, = \frac{{\sqrt {2\left( {{a^2} - a + 1} \right)} }}{2} = \frac{{\sqrt {2\left( {{a^2} - 2.a.\frac{1}{2} + \frac{1}{4} + \frac{3}{4}} \right)} }}{2} = \frac{{\sqrt {2{{\left( {a - \frac{1}{2}} \right)}^2} + \frac{3}{2}} }}{2} \ge \frac{{\sqrt 6 }}{4}
\end{array}\)
Vậy \({R_{\min }} = \frac{{\sqrt 6 }}{4} \Leftrightarrow a = \frac{1}{2} \Rightarrow b = \frac{1}{2}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f(x)\) liên tục trên đoạn [0;10] và \(\int_0^{10} {f\left( x \right)dx = 7} \) và \(\int_2^6 {f\left( x \right)dx = 3} \). Tính \(P = \int_0^2 {f\left( x \right)dx + \int_6^{10} {f\left( x \right)dx} } .\)
Cho \(\int {2x{{\left( {3x - 2} \right)}^6}dx = A{{\left( {3x - 2} \right)}^8} + B{{\left( {3x - 2} \right)}^7} + C} \) với \(A,B,C \in R\). Tính giá trị của biểu thức 12A + 7B.
Một người gửi tiết kiệm số tiền 80 000 000 đồng với lãi suất là 6,9%/năm. Biết rằng tiền lãi hàng năm được nhập vào tiền gốc, hỏi sau đúng 5 năm người đó có rút được cả gốc và lãi số tiền gần với con số nào dưới đây?
Có bao nhiêu số hạng trong khai triển nhị thức \({\left( {2x - 3} \right)^{2018}}\) thành đa thức
Cho hình chóp S.ABC có đáy \(\Delta ABC\) vuông cân ở B, \(AC = a\sqrt 2 ,SA \bot \left( {ABC} \right),SA = a\). Gọi G là trọng tâm của \(\Delta SBC\), mp \(\left( \alpha \right)\) đi qua AG và song song với BC chia khối chóp thành hai phần. Gọi V là thể tích của khối đa diện không chứa đỉnh S. Tính V.
Tìm số đường tiệm cận của đồ thị hàm số \(y = \frac{{x - 1}}{{4\sqrt {3x + 1} - 3x - 5}}\).
Tìm tất cả các giá trị thực của tham số m để phương trình \({e^{3m}} + {e^m} = 2\left( {x + \sqrt {1 - {x^2}} } \right)\left( {1 + x\sqrt {1 - {x^2}} } \right)\) có nghiệm.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại \(A,AB = 1cm,AC = \sqrt 3 cm\). Tam giác SAB, SAC lần lượt vuông tại B và C. Khối cầu ngoại tiếp hình chóp S.ABC có thể tích bằng \(\frac{{5\sqrt 5 }}{6}c{m^3}\). Tính khoảng cách từ C tới (SAB).
Có bao nhiêu số tự nhiên có 4 chữ số được viết từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8, 9 sao cho số đó chia hết cho 15?
Tập nghiệm của bất phương trình \({\left( {\frac{1}{{1 + {a^2}}}} \right)^{2x + 1}} > 1\) (với a là tham số, \(a \ne 0\)) là
Giá trị lớn nhất của hàm số \(f\left( x \right) = \frac{x}{{x + 3}}\) trên đoạn [- 2;3] bằng
Chọn ngẫu nhiên một số tự nhiên có 4 chữ số. Tính xác suất để số được chọn có dạng \(\overline {abcd} \), trong đó \(1 \le a \le b \le c \le d \le 9\).
Có bao nhiêu giá trị nguyên của tham số m trên đoạn \(\left[ { - 2018;2018} \right]\) để hàm số \(y = \ln \left( {{x^2} - 2x - m + 1} \right)\) có tập xác định R.
Cho hàm số \(y=f(x)\) có bảng biến thiên như sau:
Hàm số đạt cực đại tại điểm nào trong các điểm sau đây?
Cho hình trụ có thiết diện đi qua trục là một hình vuông có cạnh bằng 4a. Diện tích xung quanh của hình trụ là