Trong không gian với hệ tọa độ Oxyz, cho 3 điểm \(A\left( 1;2;-1 \right),B\left( 2;1;1 \right);C\left( 0;1;2 \right)\) và đường thẳng \(d:\frac{x-1}{2}=\frac{y+1}{-1}=\frac{z+2}{2}.\) Lập phương trình đường thẳng \(\text{ }\!\!\Delta\!\!\text{ }\) đi qua trực tâm của tam giác ABC, nằm trong mặt phẳng \(\left( ABC \right)\) và vuông góc với đường thẳng d.
A. \({\rm{\Delta }}:\frac{{x - 1}}{{12}} = \frac{{y + 1}}{2} = \frac{{x - 1}}{{ - 11}}\)
B. \({\rm{\Delta }}:\frac{{x - 2}}{{12}} = \frac{{y - 1}}{2} = \frac{{z + 1}}{{ - 11}}\)
C. \({\rm{\Delta }}:\frac{{x - 2}}{{12}} = \frac{{y - 1}}{2} = \frac{{z - 1}}{{ - 11}}\)
D. \({\rm{\Delta }}:\frac{{x - 2}}{{12}} = \frac{{y - 1}}{{ - 2}} = \frac{{z - 1}}{{ - 11}}\)
Lời giải của giáo viên
Ta có \(\overrightarrow{AB}=\left( 1;-1;2 \right);\overrightarrow{AC}=\left( -1;-1;3 \right)\Rightarrow \left[ \overrightarrow{AB},\overrightarrow{AC} \right]=\left( -1;-5;-2 \right)\).
Vậy phương trình mặt phẳng \(\left( ABC \right):x+5y+2z-9=0\).
Gọi trực tâm của tam giác ABC là \(H\left( a;b;c \right)\) khi đó ta có hệ
\(\left\{ {\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {\overrightarrow {BH} .\overrightarrow {AC} = 0}\\ {\overrightarrow {CH} .\overrightarrow {AB} = 0} \end{array}}\\ {H \in \left( {ABC} \right)} \end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {a - b + 2c = 3}\\ {a + b - 3c = 0} \end{array}}\\ {a + 5b + 2c = 9} \end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {a = 2}\\ {b = 1} \end{array}}\\ {c = 1} \end{array}} \right. \Rightarrow H\left( {2;1;1} \right).\)
Do đường thẳng \(\text{ }\!\!\Delta\!\!\text{ }\) nằm trong \(\left( ABC \right)\) và vuông góc với \(\left( d \right)\) nên:
\(\left\{ {\begin{array}{*{20}{c}} {{{\vec u}_{\rm{\Delta }}} \bot {{\vec n}_{ABC}}}\\ {{{\vec u}_{\rm{\Delta }}} \bot {{\vec u}_d}} \end{array}} \right. \Rightarrow {\vec u_{\rm{\Delta }}} = \left[ {{{\vec n}_{ABC}},{{\vec u}_d}} \right] = \left( {12;2; - 11} \right).\)
Vậy phương trình đường thẳng \({\rm{\Delta }}:\frac{{x - 2}}{{12}} = \frac{{y - 1}}{2} = \frac{{z - 1}}{{ - 11}}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right)\) có bảng xét dấu của đạo hàm như sau:
Số điểm cực trị của hàm số đã cho là
Cho hàm số bậc ba \(y=f\left( x \right)\) có đồ thị như hình vẽ, biết \(f\left( x \right)\) đạt cực tiểu tại điểm x=1 và thỏa mãn \(\left[ f\left( x \right)+1 \right]\) và \(\left[ f\left( x \right)-1 \right]\) lần lượt chia hết cho \({{\left( x-1 \right)}^{2}}\) và \({{\left( x+1 \right)}^{2}}\). Gọi \({{S}_{1}},{{S}_{2}}\) lần lượt là diện tích như trong hình bên. Tính \(2{{S}_{2}}+8{{S}_{1}}\)
Biết \(I=\int\limits_{2}^{4}{\frac{2x+1}{{{x}^{2}}+x}\text{d}x} =a\ln 2+b\ln 3+c\ln 5\), với a, b, c là các số nguyên. Khi đó P=2a+3b+4c thuộc khoảng nào sau đây?
Cho \({{\log }_{a}}b=2\). Tính \(P={{\log }_{a}}\left( a{{b}^{2}} \right)\).
Có bao nhiêu giá trị thực của tham số m để giá trị lớn nhất của hàm số \(y=\left| {{x}^{3}}-3x+m \right|\) trên đoạn \(\left[ 0;\ 3 \right]\) bằng 20.
Gọi S là tập hợp các số thực m sao cho với mỗi \(m\in S\) có đúng một số phức thỏa mãn \(\left| z-m \right|=6\) và \(\frac{z}{z-4}\) là số thuần ảo. Tính tổng của các phần tử của tập S.
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) thỏa mãn \(\int\limits_{0}^{\frac{\pi }{3}}{\tan x.f\left( {{\cos }^{2}}x \right)\text{d}x}=\int\limits_{1}^{8}{\frac{f\left( \sqrt[3]{x} \right)}{x}\text{d}x}=6\). Tính \(\int\limits_{\frac{1}{2}}^{\sqrt{2}}{\frac{f\left( {{x}^{2}} \right)}{x}\text{d}x}\)
Thể tích của khối hộp chữ nhật có ba kích thước \(3;4;5\) bằng
Một hình nón có bán kính đáy r = 4cm và độ dài đường sinh l = 3cm. Diện tích xung quanh của hình nón đó bằng
Số nghiệm nguyên của bất phương trình \({\log _3}\frac{{4x + 6}}{x} \le 0\) là
Có bao nhiêu số nguyên m để phương trình \({\log _3}\left( {{3^x} + 2m} \right) = {\log _5}\left( {{3^x} - {m^2}} \right)\) có nghiệm?
Đường cong trong hình vẽ dưới đây là đồ thị của hàm số nào?
Đồ thị của hàm số \(y={{x}^{4}}-3{{x}^{2}}-5\) cắt trục tung tại điểm có tung độ bằng