Trong không gian với hệ tọa độ Oxyz, cho ba mặt cầu có phương trình là \({{x}^{2}}+{{y}^{2}}+{{z}^{2}}=1{{\left( x-2 \right)}^{2}}+{{\left( y-1 \right)}^{2}}+{{\left( z+2 \right)}^{2}}=4\) và \({{\left( x+4 \right)}^{2}}+{{y}^{2}}+{{\left( z-3 \right)}^{2}}=16\). Gọi M là điểm di động ở ngoài ba mặt cầu và \(X,\text{ }Y,\text{ }Z\) là các tiếp điểm của các tiếp tuyến vẽ từ M đến ba mặt cầu sao cho MX=MY=MZ. Khi đó tập hợp các điểm M là đường thẳng d cố định. Hỏi d vuông góc với mặt phẳng nào?
A. \(\left( {{P_3}} \right):x + 2y + 4z = 2020.\)
B. \(\left( {{P_4}} \right):x + 2y + 6z = 2020.\)
C. \(\left( {{P_2}} \right):3x + 2y + 4z = 2020.\)
D. \(\left( {{P_1}} \right):5x + 2y + 4z = 2020.\)
Lời giải của giáo viên
Gọi tọa độ điểm M là \(\left( a;b;c \right)\).
Mặt cầu \({{x}^{2}}+{{y}^{2}}+{{z}^{2}}=1\) có tâm \(O\left( 0;0;0 \right)\), bán kính \({{R}_{1}}=1\) và MX là tiếp tuyến với mặt cầu nên \(M{{X}^{2}}=M{{O}^{2}}-{{r}_{1}}^{2}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}-1\).
Tương tự, ta có \(M{{Y}^{2}}={{\left( a-2 \right)}^{2}}+{{\left( b-1 \right)}^{2}}+{{\left( c+2 \right)}^{2}}-4\) và \(M{{Z}^{2}}={{\left( a+4 \right)}^{2}}+{{b}^{2}}+{{\left( c-3 \right)}^{2}}-16\).
Theo đề, MX=MY=MZ nên \(M{{X}^{2}}=M{{Y}^{2}}=M{{Z}^{2}}\).
Suy ra \(\left\{ \begin{array}{l} {a^2} + {b^2} + {c^2} - 1 = {\left( {a - 2} \right)^2} + {\left( {b - 1} \right)^2} + {\left( {c + 2} \right)^2} - 4\\ {a^2} + {b^2} + {c^2} - 1 = {\left( {a + 4} \right)^2} + {b^2} + {\left( {c - 3} \right)^2} - 16 \end{array} \right..\)
Rút gọn ta được \(\left\{ \begin{array}{l} 2a + b - 2c - 3 = 0\\ 4a - 3c + 5 = 0 \end{array} \right.\)
Từ đó, M thuộc đường thẳng d là giao tuyến của hai mặt phẳng \(\left( \alpha\right):2x+y-2z-3=0\) và \(\left( \beta\right):4x-3z+5=0\).
Đường thẳng d có một vectơ chỉ phương là \(\overrightarrow{u}=\left[ \overrightarrow{{{n}_{\left( \alpha\right)}}},\overrightarrow{{{n}_{\left( \beta\right)}}} \right]=\left( -3;-2;-4 \right)\).
Do đó, d vuông góc với mặt phẳng \(\left( {{P}_{2}} \right):3x+2y+4z=2020.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right)\) có bảng xét dấu của đạo hàm như sau:
Số điểm cực trị của hàm số đã cho là
Biết \(I=\int\limits_{2}^{4}{\frac{2x+1}{{{x}^{2}}+x}\text{d}x} =a\ln 2+b\ln 3+c\ln 5\), với a, b, c là các số nguyên. Khi đó P=2a+3b+4c thuộc khoảng nào sau đây?
Cho \({{\log }_{a}}b=2\). Tính \(P={{\log }_{a}}\left( a{{b}^{2}} \right)\).
Cho hàm số bậc ba \(y=f\left( x \right)\) có đồ thị như hình vẽ, biết \(f\left( x \right)\) đạt cực tiểu tại điểm x=1 và thỏa mãn \(\left[ f\left( x \right)+1 \right]\) và \(\left[ f\left( x \right)-1 \right]\) lần lượt chia hết cho \({{\left( x-1 \right)}^{2}}\) và \({{\left( x+1 \right)}^{2}}\). Gọi \({{S}_{1}},{{S}_{2}}\) lần lượt là diện tích như trong hình bên. Tính \(2{{S}_{2}}+8{{S}_{1}}\)
Gọi S là tập hợp các số thực m sao cho với mỗi \(m\in S\) có đúng một số phức thỏa mãn \(\left| z-m \right|=6\) và \(\frac{z}{z-4}\) là số thuần ảo. Tính tổng của các phần tử của tập S.
Có bao nhiêu giá trị thực của tham số m để giá trị lớn nhất của hàm số \(y=\left| {{x}^{3}}-3x+m \right|\) trên đoạn \(\left[ 0;\ 3 \right]\) bằng 20.
Thể tích của khối hộp chữ nhật có ba kích thước \(3;4;5\) bằng
Một hình nón có bán kính đáy r = 4cm và độ dài đường sinh l = 3cm. Diện tích xung quanh của hình nón đó bằng
Đồ thị của hàm số \(y={{x}^{4}}-3{{x}^{2}}-5\) cắt trục tung tại điểm có tung độ bằng
Số nghiệm nguyên của bất phương trình \({\log _3}\frac{{4x + 6}}{x} \le 0\) là
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) thỏa mãn \(\int\limits_{0}^{\frac{\pi }{3}}{\tan x.f\left( {{\cos }^{2}}x \right)\text{d}x}=\int\limits_{1}^{8}{\frac{f\left( \sqrt[3]{x} \right)}{x}\text{d}x}=6\). Tính \(\int\limits_{\frac{1}{2}}^{\sqrt{2}}{\frac{f\left( {{x}^{2}} \right)}{x}\text{d}x}\)
Cho cấp số cộng \(\left( {{u}_{n}} \right)\) có \({{u}_{2}}=1\) và \({{u}_{3}}=3\). Giá trị của \({{u}_{4}}\) bằng
Đường cong trong hình vẽ dưới đây là đồ thị của hàm số nào?