Trong không gian với hệ tọa độ Oxyz, cho điểm \(I\left( {1;2; - 5} \right)\) và mặt phẳng \(\left( P \right):2x - 2y + z - 8 = 0.\) Viết phương trình mặt cầu có tâm I và tiếp xúc với mặt phẳng (P).
A. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 5} \right)^2} = 25\)
B. \({\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 5} \right)^2} = 25\)
C. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 5} \right)^2} = 5\)
D. \({\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 5} \right)^2} = 36\)
Lời giải của giáo viên
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm hệ số của số hạng chứa \(x^8\) trong khai triển Nhị thức Niu tơn của \({\left( {\frac{n}{{2x}} + \frac{x}{2}} \right)^{2n}}\,\,\left( {x \ne 0} \right)\), biết số nguyên dương n thỏa mãn \(C_n^3 + A_n^2 = 50.\)
Trong không gian với hệ tọa độ Oxyz, mặt phẳng đi qua điểm \(A\left( {2; - 3; - 2} \right)\)và có một vectơ pháp tuyến \(\overrightarrow n = \left( {2; - 5;1} \right)\) có phương trình là
Cho hình chóp đều S.ABCD có cạnh đáy bằng a, góc giữa cạnh bên và mặt đáy bằng \(60^o\) Tính thể tích của khối chóp S.ABCD theo a.
Giả sử \(\left( {1 + x} \right)\left( {1 + x + {x^2}} \right)...\left( {1 + x + {x^2} + ... + {x^n}} \right) = {a_0} + {a_1}x + {a_2}{x^2} + ... + {a_m}{x^m}.\)Tính \(\sum\limits_{r = 0}^m {{a_r}.} \)
Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC với \(A\left( { - 2;4;1} \right),B\left( {1;1; - 6} \right),C\left( {0; - 2;3} \right).\) Tìm tọa độ trọng tâm G của tam giác ABC.
Trong mặt phẳng tọa độ Oxy cho vectơ \(\overrightarrow u \left( {3; - 1} \right)\). Phép tịnh tiến theo vectơ \(\overrightarrow u \) biến điểm \(M\left( {1; - 4} \right)\) thành
Tìm nguyên hàm của hàm số \(f\left( x \right) = \cos x\).
Trong không gian với hệ tọa độ Oxyz, mặt phẳng \(\left( P \right):2x + 3y + 4z - 12 = 0\) cắt trục Oy tại điểm có tọa độ là:
Cho hàm số y = f(x) có đồ thị như hình vẽ. Hàm số y = f(x) đồng biến trên khoảng nào dưới đây?
Biết rằng khi khai triển nhị thức Niutơn \({\left( {\sqrt x + \frac{1}{{2\sqrt[4]{x}}}} \right)^n} = {a_0}.\sqrt {{x^n}} + {a_1}.\sqrt {{x^{n - 1}}} .\frac{1}{{\sqrt[4]{x}}} + {a_2}.{\sqrt x ^{n - 2}}.{\left( {\frac{1}{{\sqrt[4]{x}}}} \right)^2} + {a_3}.{\sqrt x ^{n - 3}}.{\left( {\frac{1}{{\sqrt[4]{x}}}} \right)^3}...\)(với n là số nguyên lớn hơn 1) thì ba số \({a_0},{a_1},{a_2}\) theo thứ tự lập thành một cấp số cộng. Hỏi trong khai triển trên, có bao nhiêu số hạng mà lũy thừa của x là một số nguyên.
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau. Kẻ OH vuông góc với mặt phẳng (ABC) tại H. Khẳng định nào sau đây là sai?
Cho hình chóp S.ABC có \(SA = SB = SC = \frac{{a\sqrt 3 }}{2},\) đáy là tam giác vuông tại A, cạnh BC = a. Tính côsin của góc giữa đường thẳng SA và mặt phẳng (ABC)
Phương trình \({\log _x}4.{\log _2}\left( {\frac{{5 - 12x}}{{12x - 8}}} \right) = 2\) có bao nhiêu nghiệm thực?
Cho hàm số y = f(x) xác định trên R và có đạo hàm f’(x) thỏa \(f'\left( x \right) = \left( {1 - x} \right)\left( {x + 2} \right)g\left( x \right) + 2018\) với \(g\left( x \right) < 0,\forall x \in R.\) Hàm số \(y = f\left( {1 - x} \right) + 2018x + 2019\) nghịch biến trên khoảng nào?
Tập nghiệm của bất phương trình \({\log _2}\left( {x - 1} \right) > 3\) là