Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( 1;2;7 \right), B\left( \frac{-5}{7};\frac{-10}{7};\frac{13}{7} \right)\). Gọi \(\left( S \right)\) là mặt cầu tâm I đi qua hai điểm A, B sao cho OI nhỏ nhất. \(M\left( a;b;c \right)\) là điểm thuộc \(\left( S \right)\), giá trị lớn nhất của biểu thức T=2a-b+2c là
A. 18
B. 7
C. 156
D. 6
Lời giải của giáo viên
Tâm I mặt cầu \(\left( S \right)\) đi qua hai điểm A, B nằm trên mặt phẳng trung trực của AB. Phương trình mặt phẳng trung trực của AB là \(\left( P \right):x+2y+3z-14=0\).
OI nhỏ nhất khi và chỉ khi I là hình chiếu vuông góc của O trên mặt phẳng \(\left( P \right)\).
Đường thẳng d qua O và vuông góc với mặt phẳng \(\left( P \right)\) có phương trình \(\left\{ \begin{align} & x=t \\ & y=2t \\ & z=3t \\ \end{align} \right.\)
Tọa độ điểm I khi đó ứng với t là nghiệm phương trình
\(t+2.2t+3.3t-14=0\Leftrightarrow t=1\Rightarrow I\left( 1;2;3 \right)\).
Bán kính mặt cầu \(\left( S \right)\) là R=IA=4.
Từ \(T=2a-b+2c\Rightarrow 2a-b+2c-T=0\), suy ra M thuộc mặt phẳng \(\left( Q \right):2x-y+2z-T=0\).
Vì M thuộc mặt cầu nên:
\(d\left( I;\left( Q \right) \right)\le R\Leftrightarrow \frac{\left| 2.1-2+2.3-T \right|}{\sqrt{{{2}^{2}}+{{\left( -1 \right)}^{2}}+{{2}^{2}}}}\le 4\Leftrightarrow \left| 6-T \right|\le 12\Leftrightarrow -6\le T\le 18\).
CÂU HỎI CÙNG CHỦ ĐỀ
Thể tích của khối nón có chiều cao bằng \(\frac{a\sqrt{3}}{2}\) và bán kính đường tròn đáy bằng \(\frac{a}{2}\) là
Tính đạo hàm của hàm số \(f\left( x \right)=\ln x\).
Trong không gian Oxyz, cho điểm \(M\left( -1;2;2 \right)\). Đường thẳng đi qua M và song song với trục Oy có phương trình là
Gieo ngẫu nhiên một con súc sắc. Xác suất để mặt 6 chấm xuất hiện:
Cho một cấp số cộng \(\left( {{u}_{n}} \right)\) có \({{u}_{1}}=\frac{1}{3}, {{u}_{8}}=26.\) Công sai của cấp số cộng đã cho là
Một khối trụ có chiều cao và bán kính đường tròn đáy cùng bằng \(R\) thì có thể tích là
Cho số phức \(z=a+bi\left( a,b\in \mathbb{R} \right)\). Số \(z+\overline{z}\) luôn là:
Trong không gian với hệ tọa độ Oxyz, Phương trình của mặt cầu có đường kính AB với \(A\left( 2;1;0 \right)\), \(B\left( 0;1;2 \right)\) là
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
Trong không gian, điểm nào dưới đây thuộc mặt phẳng \(\left( \alpha \right):\,\,-x+y+2z-3=0\)?
Hàm số nào sau đây nghịch biến trên mỗi khoảng xác định của nó ?
Gọi m là giá trị nhỏ nhất và M là giá trị lớn nhất của hàm số \(f\left( x \right)=2{{x}^{3}}+3{{x}^{2}}-1\) trên đoạn \(\left[ -2;\,-\frac{1}{2} \right]\). Khi đó giá trị của M-m bằng
Số nghiệm thực của phương trình \({{\log }_{3}}\left( {{x}^{2}}-3x+9 \right)=2\) bằng
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, \(SA\bot \left( ABCD \right)\). Gọi I là trung điểm của SC. Khoảng cách từ I đến mặt phẳng \(\left( ABCD \right)\) bằng độ dài đoạn thẳng nào?