Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( S \right):{{\left( x-2 \right)}^{2}}+{{\left( y-1 \right)}^{2}}+{{\left( z-1 \right)}^{2}}=9\) và \(M\left( {{x}_{0}};{{y}_{0}};{{z}_{0}} \right)\in \left( S \right)\) sao cho \(A={{x}_{0}}+2{{y}_{0}}+2{{z}_{0}}\) đạt giá trị nhỏ nhất. Khi đó \({{x}_{0}}+{{y}_{0}}+{{z}_{0}}\) bằng
A. 2
B. -1
C. -2
D. 1
Lời giải của giáo viên
Tacó:\(A={{x}_{0}}+2{{y}_{0}}+2{{z}_{0}}\Leftrightarrow {{x}_{0}}+2{{y}_{0}}+2{{z}_{0}}-A=0\) nên \(M\in \left( P \right):x+2y+2z-A=0\),
do đó điểm M là điểm chung của mặt cầu \(\left( S \right)\) với mặt phẳng \(\left( P \right)\).
Mặt cầu \(\left( S \right)\) có tâm \(I\left( 2;1;1 \right)\) và bán kính R=3.
Tồn tại điểm M khi và chỉ khi \(d\left( I,\left( P \right) \right)\le R\Leftrightarrow \frac{|6-A|}{3}\le 3\Leftrightarrow -3\le A\le 15\)
Do đó, với M thuộc mặt cầu \(\left( S \right)\) thì \(A={{x}_{0}}+2{{y}_{0}}+2{{z}_{0}}\ge -3\).
Dấu đẳng thức xảy ra khi M là tiếp điểm của \(\left( P \right):x+2y+2z+3=0\) với \(\left( S \right)\) hay M là hình chiếu của I lên \(\left( P \right)\). Suy ra \(M\left( {{x}_{0}};{{y}_{0}};{{z}_{0}} \right)\) thỏa:
\(\left\{ \begin{array}{l} {x_0} + 2{y_0} + 2{z_0} + 3 = 0\\ {x_0} = 2 + t\\ {y_0} = 1 + 2t\\ {z_0} = 1 + 2t \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} t = - 1\\ {x_0} = 1\\ {y_0} = - 1\\ {z_0} = - 1 \end{array} \right.\)
\( \Rightarrow {x_0} + {y_0} + {z_0} = - 1\)
CÂU HỎI CÙNG CHỦ ĐỀ
Đồ thị hàm số \(y=\,-\,{{x}^{4\,}}\,+\,{{x}^{2}}\,+\,2\) cắt trục Oy tại điểm
Trong mặt phẳng cho tập hợp P gồm 10 điểm phân biệt trong đó không có 3 điểm nào thẳng hàng. Số tam giác có 3 đỉnh đều thuộc tập hợp P là
Trong không gian Oxyz, phương trình mặt cầu tâm \(I\left( -1;\,2;\,0 \right)\) và đi qua điểm \(A\left( 2;\,-2;\,0 \right)\) là
Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Nghiệm của phương trình \({\log _4}\left( {3x - 2} \right) = 2\) là
Cho một cấp số cộng có \({{u}_{4}}=2\), \({{u}_{2}}=4\). Hỏi \({{u}_{1}}\) và công sai d bằng bao nhiêu?
Gọi M,m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y={{x}^{4}}-10{{x}^{2}}+2\) trên đoạn \(\left[ -1;2 \right]\) . Tổng M+m bằng:
Một hội nghị có 15 nam và 6 nữ. Chọn ngẫu nhiên 3 người vào ban tổ chức. Xác suất để 3 người lấy ra là nam:
Cho khối chóp có thể tích bằng \(32c{{m}^{3}}\) và diện tích đáy bằng \(16c{{m}^{2}}.\) Chiều cao của khối chóp đó là
Số nghiệm nguyên của bất phương trình \({{\left( 17-12\sqrt{2} \right)}^{x}}\ge {{\left( 3+\sqrt{8} \right)}^{{{x}^{2}}}}\) là
Tính môđun số phức nghịch đảo của số phức \(z={{\left( 1-2i \right)}^{2}}\).
Tập giá trị của x thỏa mãn \(\frac{{{2.9}^{x}}-{{3.6}^{x}}}{{{6}^{x}}-{{4}^{x}}}\le 2\,\left( x\in \mathbb{R} \right)\) là \(\left( -\infty ;a \right]\cup \left( b;c \right].\) Khi đó \(\left( a+b+c \right)!\) bằng
Trên mặt phẳng tọa độ, điểm biểu diễn số phức z=-1+2i là điểm nào dưới đây?