Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu \(\left( S \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2x-4y-2z=0\) và điểm \(M\left( 0;1;0 \right)\). Mặt phẳng \(\left( P \right)\) đi qua M và cắt \(\left( S \right)\) theo đường tròn \(\left( C \right)\) có chu vi nhỏ nhất. Gọi \(N({{x}_{0}};\,{{y}_{0}};\,{{z}_{0}})\) là điểm thuộc đường tròn \(\left( C \right)\) sao cho \(ON=\sqrt{6}\). Tính \({{y}_{0}}\).
A. -2
B. 2
C. -1
D. 3
Lời giải của giáo viên
Mặt cầu \(\left( S \right)\) có tâm \(I\left( -1;2;1 \right)\), bán kính \(R=\sqrt{6}\).
Bán kính đường tròn \(\left( C \right)\) : \(r=\sqrt{{{R}^{2}}-{{d}^{2}}}=\sqrt{6-{{d}^{2}}}\) với \(d=d\left( I,\left( P \right) \right)\)
Chu vi \(\left( C \right)\) nhỏ nhất khi và chỉ khi r nhỏ nhất \(\Leftrightarrow d\) lớn nhất
Ta có \(d\le IM\Rightarrow {{d}_{\max }}=IM\Leftrightarrow \left( P \right)\) đi qua M và vuông góc IM
\(\left( P \right)\) đi qua \(M\left( 0;1;0 \right)\), và nhận \(\overrightarrow{IM}=\left( 1;-1;-1 \right)\) làm VTPT
\(\Rightarrow \left( P \right):x-\left( y-1 \right)-z=0\Leftrightarrow x-y-z+1=0\)
Ta có tọa độ N thỏa hệ
\(\left\{ \begin{array}{l} {x^2} + {y^2} + {z^2} + 2x - 4y - 2z = 0\\ x - y - z + 1 = 0\\ {x^2} + {y^2} + {z^2} = 6 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} 2x - 4y - 2z = - 6\\ x - y - z + 1 = 0\\ {x^2} + {y^2} + {z^2} = 6 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} y = 2\\ x = y + z - 1\\ {x^2} + {y^2} + {z^2} = 6 \end{array} \right. \Rightarrow y = 2\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y=h\left( x \right)\) có bảng biến thiên sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
Gọi \(\left( H \right)\) là hình phẳng giới hạn bởi đồ thị hàm số: \(y={{x}^{2}}-4x+4\), trục tung và trục hoành. Xác định k để đường thẳng \(\left( d \right)\) đi qua điểm \(A\left( 0;4 \right)\) có hệ số góc k chia \(\left( H \right)\) thành hai phần có diện tích bằng nhau.
Tìm các khoảng đồng biến của hàm số \(y={{x}^{3}}+3{{x}^{2}}+1\).
Gieo một con súc sắc ba lần. Xác suất để được mặt số hai xuất hiện cả ba lần là.
Cho hình chóp S.ABC có SA=SB=CB=CA, hình chiếu vuông góc của S lên mặt phẳng \(\left( ABC \right)\) trùng với trung điểm I của cạnh AB. Góc giữa đường thẳng SC và mặt phẳng \(\left( ABC \right)\) bằng.
Cho \(\int\limits_{0}^{\frac{\pi }{4}}{\frac{\sqrt{2+3\tan x}}{1+\cos 2x}dx=a\sqrt{5}+b\sqrt{2},\,\,}\) với \(a,\,\,b\in \mathbb{R}.\) Tính giá trị biểu thức A=a+b.
Nguyên hàm của hàm số \(f\left( x \right)=\cos 6x\) là
Trong không gian với hệ tọa độ Oxyz, viết phương trình tham số của đường thẳng \(\Delta :\frac{x-4}{1}=\frac{y+3}{2}=\frac{z-2}{-1}.\)
Một khối lăng trụ có chiều cao bằng 2a và diện tích đáy bằng \(2{{a}^{2}}\). Tính thể tích khối lăng trụ
Cho đồ thị hàm số y = f(x) có dạng hình vẽ bên. Tính tổng tất cả giá trị nguyên của m để hàm số y = |f(x) -2m + 5| có 7 điểm cực trị.
Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt cầu (S) có tâm \(I(\left( 1;-2;3 \right)\) và \(\left( S \right)\) đi qua điểm \(A\left( 3;0;2 \right)\).
Đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y=\frac{1-x}{-x+2}\) có phương trình lần lượt là
Tổng bình phương các nghiệm của phương trình \({\log _{\frac{1}{2}}}\left( {{x^2} - 5x + 7} \right) = 0\) bằng
Cho hai số phức \({{z}_{1}}=3-i\) và \({{z}_{2}}=-1+i\). Phần ảo của số phức \({{z}_{1}}{{z}_{2}}\) bằng