Câu hỏi Đáp án 2 năm trước 37

Trong mặt phẳng Oxy, cho hình bình hành ABCD với \(A,\text{ }B,\text{ }C\) lần lượt là các điểm biểu diễn các số phức \(1-2i,\text{ }3-i,\text{ }1+2i\) Điểm D là điểm biểu diễn của số phức z nào sau đây?

A. z = 3 + 3i

B. z = 3 - 5i

C. z =  - 1 + i

Đáp án chính xác ✅

D. z = 5 - i

Lời giải của giáo viên

verified HocOn247.com

Điểm biểu diễn các số phức \(1-2i,\text{ }3-i,\text{ }1+2i\) lần lượt là \(A\left( 1;-2 \right), B\left( 3;-1 \right), C\left( 1;2 \right)\)

Giả sử \(D\left( x;y \right)\) là điểm biểu diễn của số phức \(z=x+yi\text{ }\left( x,y\in \mathbb{R} \right)\).

Ta có \(\overrightarrow{AD}=\left( x-1;\text{ }y+2 \right), \overrightarrow{BC}=\left( -2;\text{ 3} \right)\).

Do ABCD là hình bình hành nên \(\overrightarrow {AD} = \overrightarrow {BC} \Leftrightarrow \left\{ \begin{array}{l} x - 1 = - 2\\ y + 2 = 3 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = - 1\\ y = 1 \end{array} \right.\)

Vậy z = -1 + i

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hàm số \(y=f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và không có cực trị, đồ thị của hàm số \(y=f\left( x \right)\) là đường cong của hình vẽ bên. Xét hàm số \(h\left( x \right)=\frac{1}{2}{{\left[ f\left( x \right) \right]}^{2}}-2x.f\left( x \right)+2{{x}^{2}}\). Mệnh đề nào sau đây đúng?

Xem lời giải » 2 năm trước 51
Câu 2: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( S \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-8x+10y-6z+49=0\). Tính bán kính R của mặt cầu \(\left( S \right)\).

Xem lời giải » 2 năm trước 51
Câu 3: Trắc nghiệm

Trong không gian Oxyz, cho mặt cầu \(\left( S \right)\) có tâm thuộc mặt phẳng \(\left( P \right):x+2y+z-7=0\) và đi qua hai điểm \(A\left( 1\,;\,2\,;\,1 \right), B\left( 2\,;\,5\,;\,3 \right)\). Bán kính nhỏ nhất của mặt cầu \(\left( S \right)\) bằng

Xem lời giải » 2 năm trước 49
Câu 4: Trắc nghiệm

Trong không gian Oxyz, cho hai điểm \(A\left( 1;1;1 \right)\) và \(I\left( 1;2;3 \right).\) Phương trình của mặt cầu tâm I và đi qua A là

Xem lời giải » 2 năm trước 49
Câu 5: Trắc nghiệm

Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y=-{{x}^{3}}+3x+1\) trên đoạn \(\left[ 0;2 \right]\) bằng

Xem lời giải » 2 năm trước 44
Câu 6: Trắc nghiệm

Tính thể tích của khối tứ diện ABCD, biết AB,AC,AD đôi một vuông góc và lần lượt có độ dài bằng 2,3,4.

Xem lời giải » 2 năm trước 41
Câu 7: Trắc nghiệm

Thể tích của khối trụ có chu vi đáy bằng \(4\pi a\) và độ dài đường cao bằng a là

Xem lời giải » 2 năm trước 41
Câu 8: Trắc nghiệm

Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau.

Đồ thị hàm số \(y=\left| f\left( x-2017 \right)+2018 \right|\) có bao nhiêu điểm cực trị?

Xem lời giải » 2 năm trước 41
Câu 9: Trắc nghiệm

Đồ thị sau đây là đồ thị của hàm số nào?

Xem lời giải » 2 năm trước 41
Câu 10: Trắc nghiệm

Cho hàm số y = f(x) có đồ thị như hình vẽ bên.

Hàm số đồng biến trên khoảng nào sau đây?

Xem lời giải » 2 năm trước 41
Câu 11: Trắc nghiệm

Số nghiệm nguyên của bất phương trình \({{2}^{{{x}^{2}}+3\text{x}}}\le 16\) là

Xem lời giải » 2 năm trước 41
Câu 12: Trắc nghiệm

Cho hàm số \(f\left( x \right)\) có đạo hàm \({f}'\left( x \right)={{\left( x+1 \right)}^{2}}{{\left( x-2 \right)}^{3}}\left( 2x+3 \right),\,\forall x\in \mathbb{R}\). Số điểm cực trị của hàm số đã cho là

Xem lời giải » 2 năm trước 41
Câu 13: Trắc nghiệm

Cho hàm số \(y=\frac{1}{2}{{x}^{2}}\) có đồ thị (P). Xét các điểm A, B thuộc (P) sao cho tiếp tuyến tại A và B vuông góc với nhau. Diện tích hình phẳng giới hạn bởi (P) và đường thẳng AB bằng \(\frac{9}{4}\). Gọi \(x_{1}^{{}},\,x_{2}^{{}}\) lần lượt là hoành độ của A và B. Giá trị của \({{(x_{1}^{{}}+\,x_{2}^{{}})}^{2}}\) bằng :

Xem lời giải » 2 năm trước 40
Câu 14: Trắc nghiệm

Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ bên dưới. Hỏi hàm số đó có bao nhiêu điểm cực trị?

Xem lời giải » 2 năm trước 40
Câu 15: Trắc nghiệm

Giả sử \({{z}_{1}},{{z}_{2}}\) là hai trong các số phức thỏa mãn \(\left( z-6 \right)\left( 8+\overline{zi} \right)\) là số thực. Biết rằng \(\left| {{z}_{1}}-{{z}_{2}} \right|=4\), giá trị nhỏ nhất của \(\left| {{z}_{1}}+3{{z}_{2}} \right|\) bằng

Xem lời giải » 2 năm trước 40

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »