Trong năm học 2018-2019 trường THPT chuyên đại học Vinh 13 lớp học sinh khối 10, 12 lớp học sinh khối 11, 12 lớp học sinh khối 12. Nhân ngày nhà giá Việt Nam 20 tháng 11 nhà trường chọn ngẫu nhiên 2 lớp trong trường để tham gia hội văn nghệ của trường Đại học Vinh. Xác suất để chọn được hai lớp không cùng khối là
A. \(\frac{{76}}{{111}}.\)
B. \(\frac{{87}}{{111}}.\)
C. \(\frac{{78}}{{111}}.\)
D. \(\frac{{67}}{{111}}.\)
Lời giải của giáo viên
Số phần tử của không gian mẫu là số cách chọn lớp trong số 37 lớp của trường để tham gia hội văn nghệ: \(n\left( \Omega \right) = C_{37}^2\)
Số cách chọn 2 lớp cùng khối trong trường để tham gia hội văn nghệ của trường Đại học Vinh là: \(C_{12}^2 + C_{12}^2 + C_{13}^2\)
Số cách chọn lớp không cùng khối trong trường để tham gia hội văn nghệ của trường Đại học Vinh là \(C_{37}^2 - \left( {C_{12}^2 + C_{12}^2 + C_{13}^2} \right)\)
CÂU HỎI CÙNG CHỦ ĐỀ
Hệ số của x5 trong khai triển \({\left( {1 - 2x - 3{x^2}} \right)^9}\) là
Cho hàm số \(y = \frac{{{x^2} + x}}{{x - 2}}\) có đồ thị (C). Phương trình tiếp tuyến tại điểm A(1;-2) của (C) là
Cho hàm số \(y = \sqrt {{x^2} - 1} .\) Mệnh đề nào dưới đây đúng?
Tìm giá trị nhỏ nhất của hàm số \(y = {x^2} - 1\) trên đoạn [-3;2]?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SAD là tam giác đều và nằm trong mặt phẳng vuông góc với (ABCD). Gọi M, N, P lần lượt là tủng điểm các cạnh SB, BC, CD. Tính thể tích khối tứ diện CMNP.
Cho hình lập phương ABCD.A'B'C'D' cạnh a. Tính khoảng cách giữa hai đường thẳng AB' và CD'
Cho cấp số cộng (un) có các số hạng đầu lần lượt là 5; 9; 13; 17; … Tìm công thức số hạng tổng quát un của cấp số cộng?
Tất cả các nghiệm của phương trình \({\mathop{\rm tanx}\nolimits} = cotx\) là
Cho hàm số \(y=f(x)\) có bảng biến thiên như hình vẽ sau:
Khi đó số nghiệm của phương trình \(2\left| {f\left( {2x - 3} \right)} \right| - 5 = 0\) là:
Biết số tự nhiên n thỏa mãn \(C_n^1 + 2\frac{{C_n^2}}{{C_n^1}} + ... + n\frac{{C_n^n}}{{C_n^{n - 1}}} = 45\) . Tính \(C_{n + 4}^n\) ?
Số tiệm cận ngang của đồ thị hàm số \(y = \frac{{\left| x \right| - 2018}}{{x + 2019}}\) là
Cho cấp số nhân (un) thỏa mãn \(\left\{ \begin{array}{l}
{u_1} - {u_3} + {u_5} = 65\\
{u_1} + {u_7} = 325
\end{array} \right..\) Tính u3.
Gọi \({x_1},{x_2},{x_3}\) là các cực trị của hàm số \(y = - {x^4} + 4{x^2} + 2019.\) Tính tổng \({x_1} + {x_2} + x{}_3\) bằng?
Tung hai con súc sắc 3 lần độc lập với nhau. Tính xác suất để có đúng một lần tổng số chấm xuất hiện trên hai con súc sắc bằng 6. Kết quả làm tròn đến 3 ba chữ số ở phần thập phân)
Tất cả các giá trị của tham số m để hàm số \(y = \left( {m - 1} \right){x^4}\) đạt cực đại tại x = 0 là