Đề thi thử THPT QG năm 2022 môn Toán - Trường THPT Phùng Hưng

Đề thi thử THPT QG năm 2022 môn Toán

  • Hocon247

  • 50 câu hỏi

  • 90 phút

  • 56 lượt thi

  • Trung bình

Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com

Câu 1: Trắc nghiệm ID: 151078

Cho hàm số sau \(y = \dfrac{1 }{ 4}{x^4} - 2{x^2} + 3\). Khẳng định nào sau đây đúng ?

Xem đáp án

\(y = \dfrac{1}{4}{x^4} - 2{x^2} + 3\)

TXĐ: \(D = \mathbb{R}\)

 

\(\begin{array}{l}y' = {x^3} - 4x\\y' = 0 \Rightarrow {x^3} - 4x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  - 2\\x = 2\end{array} \right.\end{array}\)

Từ BBT, hàm số ĐB trên \(\left( { - 2,0} \right)\)và \({\rm{(2, + }}\infty {\rm{)}}\); NB trên \(( - \infty , - 2)\) và \(\left( {0,2} \right)\) 

Câu 2: Trắc nghiệm ID: 151079

Đồ thị sau đây là của hàm số nào ?

Xem đáp án

TCĐ: \(x = 1\) loại C.

Đths đi qua điểm \(\left( { - 1;0} \right)\) nên loại A,B.

Câu 3: Trắc nghiệm ID: 151080

Rút gọn biểu thức \(P = {{{a^2}b.{{(a{b^{ - 2}})}^{ - 3}}} \over {{{({a^{ - 2}}{b^{ - 1}})}^{ - 2}}}}\).

Xem đáp án

Ta có: \(P = \dfrac{{{a^2}b.{{(a{b^{ - 2}})}^{ - 3}}}}{{{{({a^{ - 2}}{b^{ - 1}})}^{ - 2}}}} = \dfrac{{{a^{ - 1}}{b^7}}}{{{a^4}{b^2}}} \)\(\,= {a^{ - 5}}{b^5} = {\left( {\dfrac{b}{a}} \right)^5}\)

Chọn đáp án B.

Câu 4: Trắc nghiệm ID: 151081

Cho hàm số \(y = {x^{{1 \over 4}}}(10 - x)\,,\,\,x > 0\). Khẳng định nào sau đây là đúng ?

Xem đáp án

Ta có: \(y = {x^{\dfrac{1}{4}}}(10 - x)\,,\,\,x > 0\)

\(\Rightarrow y' = \dfrac{1}{4}{x^{ - \dfrac{3}{4}}}\left( {10 - x} \right) - {x^{\dfrac{1}{4}}}\)\(\, = \dfrac{{10 - x}}{{4\sqrt[4]{{{x^3}}}}} - \dfrac{1}{{\sqrt[4]{x}}} \)\(\,= \dfrac{1}{{\sqrt[4]{x}}}\left( {\dfrac{{10 - x}}{{4\sqrt x }} - 1} \right)\)     

+) \(y' = 0 \Leftrightarrow \dfrac{1}{{\sqrt[4]{x}}}\left( {\dfrac{{10 - x}}{{4\sqrt x }} - 1} \right) = 0 \)

 

\(\Leftrightarrow \dfrac{{10 - x}}{{4\sqrt x }} - 1 = 0 \Leftrightarrow 10 - x = 4\sqrt x \)

\( \Leftrightarrow x + 4\sqrt x  - 10 = 0 \)

\(\Leftrightarrow \left[ \begin{array}{l}\sqrt x =  - 2 + \sqrt {14}(tm) \\\sqrt x =  - 2 - \sqrt {14}(ktm) \end{array} \right.\)

\( \Leftrightarrow x = 18 - 4\sqrt {14} \)

+ Hàm số đồng biến trên \(\left( {0; 18 -4\sqrt {14} } \right)\) và nghịch biến trên \(\left( { 18- 4\sqrt {14} ; + \infty } \right)\)

Chọn đáp án B.

Câu 5: Trắc nghiệm ID: 151082

Cho tứ diện \(ABCD\) có \(AD \bot \left( {ABC} \right)\), \(DB \bot BC\), \(AB = AD = BC = a\). Kí hiệu \({V_1}\), \({V_2}\), \({V_3}\) lần lượt là thể tích của hình tròn xoay sinh bởi tam giác \(ABD\) khi quay quanh \(AD\), tam giác \(ABC\) khi quay quanh \(AB\), tam giác \(DBC\) khi quay quanh \(BC\). Trong các mệnh đề sau, mệnh đề nào đúng?

Xem đáp án

\(\left. \begin{array}{l}BC \bot AB\\BC \bot AD\end{array} \right\} \Rightarrow BC \bot AB\)  do đó tam giác ABC vuông cân tại B suy ra \(AC = a\sqrt 2 \)

Ta có:

\(\begin{array}{l}{V_1} = \dfrac{1}{3}\pi A{B^2}.AD = \dfrac{{\pi {a^3}}}{3};\\{V_2} = \dfrac{1}{3}.B{C^2}.AB = \dfrac{{\pi {a^3}}}{3}\\{V_3} = \dfrac{1}{3}\pi D{B^2}.BC\\\;\;\;\;\; = \dfrac{{\pi \left( {A{D^2} + A{B^2}} \right)}}{3}.BC = \dfrac{{2\pi {a^3}}}{3}\\ \Rightarrow {V_1} + {V_2} = {V_3}.\end{array}\)

Chọn  A.

Câu 7: Trắc nghiệm ID: 151084

Tập hợp các điểm biểu diễn số phức z thỏa mãn \(|z| = |2 + 2i|\) là:

Xem đáp án

\(\left| z \right| = \left| {2 + 2i} \right| = 2\sqrt 2 \)

Đặt z= a+ bi

\(\begin{array}{l}|z| = 2\sqrt 2 \\ \Leftrightarrow |a + bi| = 2\sqrt 2 \\ \Leftrightarrow \sqrt {{a^2} + {b^2}}  = 2\sqrt 2 \end{array}\)

Tập hợp các điểm biểu diễn cho số phức z  là đường tròn có tâm O(0,0), bán kính \(r = 2\sqrt 2 \)

Câu 8: Trắc nghiệm ID: 151085

Tổng của hai số phức \({z_1} = 1 - 2i\,,\,\,{z_2} = 2 + 3i\) là:

Xem đáp án

\({z_1} + {z_2} = 1--2i + 2 + 3i = 3 + i\)

Câu 9: Trắc nghiệm ID: 151086

Hình lập phương có bao nhiêu mặt phẳng đối xứng?

Xem đáp án

Xét khối lập phương ABCD.A'B'C'D' 
Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA 
M', N', P', Q' lần lượt là trung điểm của A'B', B'C', C'D', D'A' 
R, S, T, U lần lượt là trung điểm của AA', BB', CC', DD' 
Khối lập phương ABCD. A'B'C'D' có 9 mp đối xứng như sau: 
a) 3 mp đối xứng chia nó thành 2 khối hộp chữ nhật (là các mp MPP'M', NQQ'N', RSTU) 
b) 6 mp đối xứng chia nó thành 2 khối lăng trụ tam giác (là các mp ACC'A', BDD'B', AB'C'D, A'BCD', ABC'D', A'B'CD)

Chọn C

Câu 10: Trắc nghiệm ID: 151087

Thể tích khối bát diện đều có cạnh bằng a

Xem đáp án

 

Thể tích khối bát diện đều \(V = 2{V_{S.ABCD}}\)

Gọi \(O = AC \cap BD \Rightarrow SO \bot \left( {ABCD} \right)\)

Vì ABCD là hình vuông nên \(AC = BD = a\sqrt 2 \)

\(\Rightarrow OA = \dfrac{1}{2}AC = \dfrac{{a\sqrt 2 }}{2}\)

\(SO \bot \left( {ABCD} \right) \Rightarrow SO \bot OA\)

\(\Rightarrow \Delta SOA\) vuông tại O

\( \Rightarrow SO = \sqrt {S{A^2} - O{A^2}}  = \sqrt {{a^2} - \dfrac{{{a^2}}}{2}} \)\(\, = \dfrac{{a\sqrt 2 }}{2}\)

 

\( \Rightarrow {V_{S.ABCD}} = \dfrac{1}{3}SO.{S_{ABCD}} \)

                      \(= \dfrac{1}{3}\dfrac{{a\sqrt 2 }}{2}.{a^2} = \dfrac{{{a^3}\sqrt 2 }}{6}\)

\( \Rightarrow V = 2\dfrac{{{a^3}\sqrt 2 }}{6} = \dfrac{{{a^3}\sqrt 2 }}{3}\)

Chọn A.

Câu 11: Trắc nghiệm ID: 151088

Trong không gian \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z + 1} \right)^2} = 289.\), tọa độ giao điểm M của đường thẳng \(Oxyz\) và mặt phẳng \(d:\dfrac{{x + 5}}{2} = \dfrac{{y - 7}}{{ - 2}} = \dfrac{z}{1}\) là

Xem đáp án

\(\left( d \right)\) có VTPT \(M\left( {11;{\rm{ }}0; - 25} \right)\)

\(\overrightarrow u  = \left( {2;\,1;\, - 2} \right)\) có VTCP \(IH = d\left( {I,\,AB} \right) = \dfrac{{\left| {\left[ {\overrightarrow u ,\overrightarrow {MI} } \right]} \right|}}{{\left| {\overrightarrow u } \right|}} = 15\,\,\)

Ta có \(R = \sqrt {I{H^2} + {{\left( {\dfrac{{AB}}{2}} \right)}^2}}  = 17\)

Chọn đáp án A.

Câu 12: Trắc nghiệm ID: 151089

Tính tích phân \(I = \int\limits_0^{\dfrac{\pi }{2}} {\left( {\cos x + {e^x}} \right)\,dx} \).

Xem đáp án

Ta có:

\(I = \int\limits_0^{\dfrac{\pi }{2}} {\left( {\cos x + {e^x}} \right)\,dx} \)

\(\;\; = \left( {\sin x + {e^x}} \right)\left| {_{_{_{_0^{}}^{}}}^{\dfrac{\pi }{2}}} \right. \)

\(\;\;= \left( {\sin \dfrac{\pi }{2} + {e^{\dfrac{\pi }{2}}}} \right) - \left( {\sin 0 + {e^0}} \right)\)

\(\;\;= {e^{\dfrac{\pi }{2}}}.\)

Chọn đáp án D.

Câu 13: Trắc nghiệm ID: 151090

Biết rằng hàm số \(f(x) = {\left( {6x + 1} \right)^2}\) có một nguyên hàm \(F(x) = a{x^3} + b{x^2} + cx + d\) thỏa mãn điều kiện F(-1.) 20. Tính tổng a + b + c + d.

Xem đáp án

Ta có \(f\left( x \right) = {\left( {6x + 1} \right)^2} = 36{x^2} + 12x + 1\)

Khi đó ta có: \(\int {\left( {36{x^2} + 12x + 1} \right)\,dx}  \)\(\,= 12{x^3} + 6{x^2} + x + d\)

\( \Rightarrow F\left( x \right) = 12{x^3} + 6{x^2} + x + d\)

Theo giải thiết ta có \(F\left( { - 1} \right) = 20 \)

\(\Rightarrow 12.\left( { - 1} \right){}^3 + 6.{\left( { - 1} \right)^2} + \left( { - 1} \right) + d = 20 \)

\(\Leftrightarrow d = 27\)

Vậy: \(a + b + c + d = 12 + 6 + 1 + 27 = 46.\)

Chọn đáp án A.

Câu 14: Trắc nghiệm ID: 151091

Để tính \(I = \int\limits_0^{\dfrac{\pi }{2}} {{x^2}\cos x\,dx} \) theo phương pháp tích pân từng phần , ta đặt:

Xem đáp án

Phương pháp tích phân từng phần

Đặt \(\left\{ \begin{array}{l}u = {x^2}\\dv = \cos x\,dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = 2x\,dx\\v = \sin x\end{array} \right.\)

Chọn đáp án B.

Câu 15: Trắc nghiệm ID: 151092

Tìm giá trị lớn nhất của hàm số \(y = \dfrac{{3x - 1}}{ {x - 3}}\) trên đoạn [0 ; 2].

Xem đáp án

\(y' =  - \frac{8}{{{{\left( {x - 3} \right)}^2}}} < 0\) nên hàm số nghịch biến trên \(\left[ {0;2} \right]\)

\( \Rightarrow \mathop {\max }\limits_{\left[ {0;2} \right]} y = y\left( 0 \right) = \frac{1}{3}\)

Câu 16: Trắc nghiệm ID: 151093

Hàm số \(y =\dfrac {1 }{ 3}{x^3} - 2{x^2} + 3x - 1\) nghịch biến trên khoảng nào trong những khoảng sau đây ? 

Xem đáp án

\(y = \dfrac{1}{3}{x^3} - 2{x^2} + 3x - 1\)

\(\begin{array}{l}
y' = {x^2} - 4x + 3\\
y' = 0 \Leftrightarrow \left[ \begin{array}{l}
x = 1\\
x = 3
\end{array} \right.
\end{array}\)

Vậy hàm số nghịch biến trên (1,3).

Câu 17: Trắc nghiệm ID: 151094

Rút gọn biểu thức \(p = \log {a \over b} + \log {b \over c} + \log {c \over d} - \log {{ay} \over {dx}}\).

Xem đáp án

Ta có: \(p = \log \dfrac{a}{b} + \log \dfrac{b}{c} + \log \dfrac{c}{d} - \log \dfrac{{ay}}{{dx}} \)

\(= \log \left( {\dfrac{{abc}}{{bcd}}} \right) - \left( {\log \dfrac{a}{d} + \log \dfrac{y}{x}} \right)\)

\( = \log \left( {\dfrac{a}{d}} \right) - \left( {\log \dfrac{a}{d} + \log \dfrac{y}{x}} \right) \)

\(=  - \log \dfrac{y}{x} = \log \dfrac{x}{y}.\)

Chọn đáp án B.

Câu 18: Trắc nghiệm ID: 151095

Cho b > 1, sinx > 0, cosx > 0 và \({\log _b}\sin x = a\) Khi đó \({\log _b}\cos x\) bằng:

Xem đáp án

Ta có   \({\log _b}\sin x = a \Rightarrow \sin x = {b^a} \)

\(\Leftrightarrow {\sin ^2}x = {\left( {{b^a}} \right)^2}\)

\( \Rightarrow {\cos ^2}x = 1 - {\sin ^2}x = 1 - {\left( {{b^a}} \right)^2}\)

\(\Leftrightarrow \cos x = \sqrt {1 - {{\left( {{b^a}} \right)}^2}} \)

Khi đó \({\log _b}\cos x = {\log _b}{\left( {1 - {{\left( {{b^a}} \right)}^2}} \right)^{\dfrac{1}{2}}}\)\(\, = \dfrac{1}{2}{\log _b}\left( {1 - {{\left( {{b^a}} \right)}^2}} \right)\)

Chọn đáp án D.

Câu 19: Trắc nghiệm ID: 151096

Cho số phức z thỏa mãn \(|z + 1 - i|\,\, \le \,3\)là số thực. Tập hợp điểm M biểu diễn số phức z là:

Xem đáp án

Đặt z = x + yi

 \(\begin{array}{l}|z + 1 - i| \le 3\\ \Leftrightarrow |x + yi + 1 - i| \le 3\\ \Leftrightarrow \left| {\left( {x + 1} \right) + \left( {y - 1} \right) \le 3} \right|\\ \Leftrightarrow \sqrt {{{\left( {x + 1} \right)}^2} + {{\left( {y - 1} \right)}^2}}  \le 3\end{array}\)

Điểm biểu diễ số phức z là một hình tròn tâm I(-1,1), bán kính \(r = 3\)

Câu 20: Trắc nghiệm ID: 151097

Cho hai số phức \({z_1} = 4 + 5i\,,\,\,{z_2} = 1 + 2i\). Hãy tìm khẳng định  đúng ? 

Xem đáp án

\({z_1} + {z_2} = 4 + 5i + 1 + 2i = 5 + 7i\)

Câu 21: Trắc nghiệm ID: 151098

Khối đa diện đều loại {4; 3} có bao nhiêu đỉnh?

Xem đáp án

Lập phương loại {4;3} có M = 6 , Đ = 8

Chọn C.

Câu 22: Trắc nghiệm ID: 151099

Tính thể tích của khối lăng trụ tam giác đều có tất cả các cạnh bằng a

Xem đáp án

Thể tích khối lăng trụ tam giác đều có tất cả các cạnh a là:

\(V = \dfrac{{{a^2}\sqrt 3 }}{4}.a = \dfrac{{{a^3}\sqrt 3 }}{4}\)

Chọn D.

Câu 24: Trắc nghiệm ID: 151101

Cho hai điểm \(A\), \(B\) phân biệt. Tập hợp tâm những mặt cầu đi qua \(A\) và \(B\) là

Xem đáp án

Tập hợp tâm các mặt cầu đi qua hai điểm A và B là mặt phẳng trung trực của đoạn thẳng AB.

Chọn D

Câu 25: Trắc nghiệm ID: 151102

Cho hàm số f(x) xác định và có đạo hàm trên (a ; b). Nếu \(f'(x) < 0,\forall x \in (a;b)\) thì:

Xem đáp án

Nếu \(f'\left( x \right) < 0,\forall x \in \left( {a;b} \right)\) thì hàm số nghịch biến trên \(\left( {a;b} \right)\).

Chọn B.

Câu 26: Trắc nghiệm ID: 151103

Giả sử y = f(x) có đạo hàm cấp hai trên (a ; b). Nếu \(\left\{ \matrix{f'({x_0}) = 0 \hfill \cr f''({x_0}) < 0 \hfill \cr}  \right.\) thì

Xem đáp án

Nếu \(\left\{ \begin{array}{l}f'\left( {{x_0}} \right) = 0\\f''\left( {{x_0}} \right) < 0\end{array} \right.\) thì \(x = {x_0}\) là điểm cực đại của hàm số.

Chọn B.

Câu 27: Trắc nghiệm ID: 151104

Trong các mệnh đề sau, mệnh đề nào đúng ?

Xem đáp án

+ Hàm số \(y = \dfrac{1}{x}\) không liên tục trên \(\left( { - \infty ; + \infty } \right)\) thì không có nguyên hàm luên tục trên\(\left( { - \infty ; + \infty } \right)\)

\( \to \) Đáp án A sai.

+ Ta có: \(\int {{x^3}\,dx = \dfrac{{{x^4}}}{4} + C} \)\( \to \) Đáp án B sai.

+ Ta có: \(\int {\ln x\,dx} \)  . Đặt \(\left\{ \begin{array}{l}u = \ln x\\dv = dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = \dfrac{1}{x}dx\\v = x\end{array} \right.\)

Khi đó ta có: \(\int {\ln x\,dx}  = x\ln x - \int {x.\dfrac{1}{x}dx} \)\(\, = x\ln x - \int {dx}  = x\ln x - x + C\)

\( \to \) Đáp án D sai.

Chọn đáp án C.

Câu 28: Trắc nghiệm ID: 151105

Hàm số nào sau đây không phải là một nguyên hàm của: \(f(x) = {2^{\sqrt x }}\dfrac{{\ln x}}{{\sqrt x }}\) ?

Xem đáp án

Ta có:

\(\int {{2^{\sqrt x }}\dfrac{{\ln x}}{{\sqrt x }}dx}  \\= \int {{2^{\sqrt x }}\dfrac{{\ln {{\left( {\sqrt x } \right)}^2}}}{{\sqrt x }}} \,d\left( {{{\left( {\sqrt x } \right)}^2}} \right) \\= 4\int {{2^{\sqrt x }}\ln \left( {\sqrt x } \right)} \,d\left( {\sqrt x } \right)\\ = {2^{\sqrt x  + 1}} + C\)

Chọn đáp án B.

Câu 29: Trắc nghiệm ID: 151106

Đổi biến u = lnx thì tích phân \(I = \int\limits_1^e {\dfrac{{1 - \ln x}}{{{x^2}}}\,dx} \) thành:

Xem đáp án

Đặt \(\left\{ \begin{array}{l}u = \ln x \Rightarrow du = \dfrac{1}{x}dx\\u = \ln x \Rightarrow x = {e^u} \Rightarrow \dfrac{1}{x} = \dfrac{1}{{{e^u}}} = {e^{ - u}}\end{array} \right.\)

Đổi cận \(\left\{ \begin{array}{l}x = 1 \to u = 0\\x = e \to u = 1\end{array} \right.\)

Khi đó ta có:

\(I = \int\limits_1^e {\dfrac{{1 - \ln x}}{{{x^2}}}\,dx}  \\\;\;= \int\limits_1^e {\dfrac{{1 - \ln x}}{x}d\left( {\ln x} \right)}  \\\;\;= \int\limits_0^1 {\left( {1 - u} \right){e^{ - u}}} du\)

Chọn đáp án B.

Câu 30: Trắc nghiệm ID: 151107

Cho khối chóp có thể tích \(V\), diện tích đáy là \(S\) và chiều cao \(h\). Chọn công thức đúng:

Xem đáp án

Cho khối chóp có thể tích \(V\), diện tích đáy là \(S\) và chiều cao \(h\). Công thức tính thể tích là: \(V = \dfrac{1}{3}Sh\)   

Câu 31: Trắc nghiệm ID: 151108

Cho hình nón tròn xoay có thiết diện qua trục là một tam giác vuông cân. Trong các khẳng định sau khẳng định nào sai?

Xem đáp án

Hai đường sinh bất kì của nón có thể không vuông góc.

Chọn D.

Câu 32: Trắc nghiệm ID: 151109

Cho tam giác \(ABC\) vuông tại \(A\), có \(AB = 3cm,\,AC = 4cm\). Gọi \({V_1},\,\,{V_2},\,\,{V_3}\) lần lượt là thể tích của khối tròn xoay hình thành khi quay tam giác \(ABC\) quanh \(AB,\,AC\) và \(BC\). Trong các kết luận sau, kết luận nào đúng?

Xem đáp án

\(\begin{array}{l}BC = \sqrt {A{B^2} + A{C^2}}  = \sqrt {{3^2} + {4^2}}  = 5\\\dfrac{1}{{A{H^2}}} = \dfrac{1}{{A{B^2}}} + \dfrac{1}{{A{C^2}}} = \dfrac{1}{{{3^2}}} + \dfrac{1}{{{4^2}}}\\ \Rightarrow AH = 2,4\end{array}\)

Thể tích của khối tròn xoay khi cho tam giác ABC quay quanh AB là:

\({V_1} = \dfrac{1}{3}\pi {.4^2}.3 = 16\pi \left( {c{m^3}} \right)\)

Thể tích của khối tròn xoay khi cho tam giác ABC quay quanh AC là:

\({V_2} = \dfrac{1}{3}\pi {.3^2}.4 = 12\pi \left( {c{m^3}} \right)\)

Thể tích của khối tròn xoay khi cho tam giác ABC quay quanh BC là:

\({V_3} = \dfrac{1}{3}\pi .2,{4^2}.5 = 9,6\pi \left( {c{m^3}} \right)\)

Do đó: \({V_3} < {V_2} < {V_1}\)

Chọn A.

Câu 33: Trắc nghiệm ID: 151110

Một khối chóp có đáy là đa giác \(n\) cạnh. Trong các mệnh đề sau đây, mệnh đề nào đúng?

Xem đáp án

Khối chóp có đáy là đa giác \(n\)cạnh thì có \(n + 1\)đỉnh (gồm đỉnh \(S\)và \(n\)đỉnh của đa giác đáy),

\(n + 1\)mặt (\(1\)mặt đáy và \(n\)mặt bên) và \(2n\) cạnh (\(n\)cạnh bên và \(n\)cạnh đáy)

Do đó chỉ có ý A đúng.

Chọn A

Câu 34: Trắc nghiệm ID: 151111

Giải phương trình \({2 \over {1 - {e^{ - 2x}}}} = 4\).

Xem đáp án

Điều kiện: \(x \ne 0\)

Ta có:

\(\dfrac{2}{{1 - {e^{ - 2x}}}} = 4 \)

\(\Leftrightarrow \dfrac{2}{{1 - \dfrac{1}{{{e^{2x}}}}}} = 4 \)

\(\Leftrightarrow \dfrac{{2{e^{2x}}}}{{{e^{2x}} - 1}} = 4\)

\( \Leftrightarrow 2{e^{2x}} = 4{e^{2x}} - 4 \)

\(\Leftrightarrow {e^{2x}} = 2\)

\(\Leftrightarrow 2x = \ln 2 \)

\(\Leftrightarrow x = \dfrac{{\ln 2}}{2}\)

Chọn đáp án B.

Câu 35: Trắc nghiệm ID: 151112

Tìm tập hợp nghiệm của phương trình \({x^{\log x}} = {{{x^3}} \over {100}}\).

Xem đáp án

Đặt \(\log x = t \Rightarrow x = {10^t}\)

Khi đó phương trình trở thành: \({\left( {{{10}^t}} \right)^t} = \dfrac{{{{\left( {{{10}^t}} \right)}^3}}}{{100}} \Leftrightarrow {10^2}{.10^{{t^2}}} = {10^{3t}}\)

\( \Leftrightarrow {10^{{t^2} + 2}} = {10^{3t}}\)

\(\Leftrightarrow {t^2} - 3t + 2 = 0\)

\(\Leftrightarrow \left[ \begin{array}{l}t = 1\\t = 2\end{array} \right.\)

+ Với \(t = 1 \Rightarrow \log x = 1 \Leftrightarrow x = 10\)

+ Với \(t = 2 \Rightarrow \log x = 2 \Leftrightarrow x = 100.\)

Chọn đáp án B.

Câu 36: Trắc nghiệm ID: 151113

Tính tích phân \(\int\limits_{ - \dfrac{\pi }{3}}^{\dfrac{\pi }{3}} {{x^3}\cos x\,dx} \) ta được:

Xem đáp án

Đặt \(\left\{ \begin{array}{l}u = {x^3}\\dv = \cos xdx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = 3{x^2}dx\\v = \sin x\end{array} \right.\)

Khi đó ta có:

\(\int\limits_{ - \dfrac{\pi }{3}}^{\dfrac{\pi }{3}} {{x^3}\cos x\,dx}  \\= \left( {{x^3}\sin x} \right)\left| {_{ - \dfrac{\pi }{3}}^{\dfrac{\pi }{3}}} \right. - 3\int\limits_{ - \dfrac{\pi }{3}}^{\dfrac{\pi }{3}} {\sin x.{x^2}dx} \)

Đặt \(I = \int\limits_{ - \dfrac{\pi }{3}}^{\dfrac{\pi }{3}} {{x^2}\sin x\,dx} \).            

Ta có: \(I = \int\limits_{ - \dfrac{\pi }{3}}^{\dfrac{\pi }{3}} {{x^2}\sin x\,dx} \)\(\, = \left( { - {x^2}\cos x} \right)\left| {_{ - \dfrac{\pi }{3}}^{\dfrac{\pi }{3}}} \right. + 2\int\limits_{ - \dfrac{\pi }{3}}^{\dfrac{\pi }{3}} {\cos x.} \,xdx\)

Đặt \({I_1} = \int\limits_{ - \dfrac{\pi }{3}}^{\dfrac{\pi }{3}} {x\cos xdx} \)

Ta có: \({I_1} = \int\limits_{ - \dfrac{\pi }{3}}^{\dfrac{\pi }{3}} {x\cos xdx} \)\(\, = \left( {x\sin x} \right)\left| {_{ - \dfrac{\pi }{3}}^{\dfrac{\pi }{3}}} \right. - \int\limits_{ - \dfrac{\pi }{3}}^{\dfrac{\pi }{3}} {\sin xdx} \)

\( = \left( {\dfrac{\pi }{3}.\dfrac{{\sqrt 3 }}{2} - \left( { - \dfrac{\pi }{3}} \right)\left( { - \dfrac{{\sqrt 3 }}{2}} \right)} \right) - \left( { - \cos x} \right)\left| {_{ - \dfrac{\pi }{3}}^{\dfrac{\pi }{3}}} \right.\)\( = 0 - \left( { - \dfrac{1}{2} - \left( { - \dfrac{1}{2}} \right)} \right) = 0\)

Khi đó \(I = \left( { - {x^2}\cos x} \right)\left| {_{ - \dfrac{\pi }{3}}^{\dfrac{\pi }{3}}} \right. \)\(\,= \left( { - \dfrac{{{\pi ^2}}}{9}.\dfrac{1}{2}} \right) - \left( { - \dfrac{{{\pi ^2}}}{9}.\dfrac{1}{2}} \right) = 0\)

Khi đó \(\int\limits_{ - \dfrac{\pi }{3}}^{\dfrac{\pi }{3}} {{x^3}\cos x\,dx}\)\(\,  = \left( {{x^3}\sin x} \right)\left| {_{ - \dfrac{\pi }{3}}^{\dfrac{\pi }{3}}} \right. \)\(\,= \dfrac{{{\pi ^3}}}{{27}}.\dfrac{{\sqrt 3 }}{2} - \left( { - \dfrac{{{\pi ^3}}}{{27}}} \right)\left( { - \dfrac{{\sqrt 3 }}{2}} \right) = 0\)

Chọn đáp án D.

Câu 37: Trắc nghiệm ID: 151114

Thực hiện chọn phát biểu đúng: 

Xem đáp án

Hàm số bậc ba nếu có cực đại thì có cả cực tiểu vì hàm số bậc ba chỉ có thể có hai điểm cực trị hoặc không có điểm cực trị nào.

Chọn C.

Câu 38: Trắc nghiệm ID: 151115

Nếu \(\mathop {\lim }\limits_{x \to {x_0}^ + } y =  + \infty \) thì đường thẳng x = x0 là:

Xem đáp án

Nếu \(\mathop {\lim }\limits_{x \to {x_0}^ + } y =  + \infty \) thì \(x = {x_0}\) là đường TCĐ của đồ thị hàm số.

Chọn B.

Câu 39: Trắc nghiệm ID: 151116

Tìm tập nghiệm cảu bất phương trình \(\log (x - 21) < 2 - \log x\).

Xem đáp án

Điều kiện: \(x > 21.\)

Ta có: \(\log (x - 21) < 2 - \log x \)

\(\Leftrightarrow \log \left( {x - 21} \right) + \log x < 2\)

\( \Leftrightarrow \log \left( {{x^2} - 21x} \right) < 2\)

\(\Leftrightarrow {x^2} - 21x < 100\)

\( \Leftrightarrow {x^2} - 21x - 100 < 0 \)

\(\Leftrightarrow \left( {x + 4} \right)\left( {x - 25} \right) < 0 \)

\(\Leftrightarrow 21<x < 25\) (vì \(x > 21.\))

Chọn đáp án C.

Câu 40: Trắc nghiệm ID: 151117

Tính nguyên hàm \(\int {{x^2}\sqrt {{x^3} + 5} } \,dx\) ta được kết quả là :

Xem đáp án

Ta có:

\(\int {{x^2}\sqrt {{x^3} + 5} } \,dx \)

\(= \dfrac{1}{3}\int {\sqrt {{x^3} + 5} } \,d\left( {{x^3} + 5} \right) \)

\(= \dfrac{1}{3}\int {{{\left( {{x^3} + 5} \right)}^{\dfrac{1}{2}}}} d\left( {{x^3} + 5} \right) \)

\(= \dfrac{2}{9}{\left( {{x^3} + 5} \right)^{\dfrac{3}{2}}} + C\)

Chọn đáp án A.

Câu 41: Trắc nghiệm ID: 151118

Cho khối chóp tam giác \(S.ABC\), trên các cạnh \(SA,SB,SC\) lần lượt lấy các điểm \(A',B',C'\). Khi đó:

Xem đáp án

Nếu \(A',B',C'\) là ba điểm lần lượt nằm trên các cạnh \(SA,SB,SC\) của hình chóp tam giác \(S.ABC\). Khi đó:

\(\dfrac{{{V_{S.A'B'C'}}}}{{{V_{S.ABC}}}} = \dfrac{{SA'}}{{SA}}.\dfrac{{SB'}}{{SB}}.\dfrac{{SC'}}{{SC}}\)

Chọn D.

Câu 42: Trắc nghiệm ID: 151119

Trong không gian \(Oxyz\) cho ba vectơ \(\overrightarrow a  = \left( {3; - 2;4} \right),\)\(\mathop b\limits^ \to   = \left( {5;1;6} \right)\), \(\mathop c\limits^ \to   = \left( { - 3;0;2} \right)\). Tìm vectơ \(\overrightarrow x \) sao cho vectơ  \(\overrightarrow x \) đồng thời vuông góc với \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \)

Xem đáp án

Dễ thấy chỉ có \(\overrightarrow x  = (0;0;0)\)thỏa mãn \(\overrightarrow x .\overrightarrow a  = \overrightarrow x .\overrightarrow b  = \overrightarrow x .\overrightarrow c  = 0.\)

Câu 43: Trắc nghiệm ID: 151120

Đồ thị hàm số bậc ba có mấy tâm đối xứng ?

Xem đáp án

Đồ thị hàm số bậc ba có duy nhất 1 tâm đối xứng.

Hoành độ tâm đối xứng là nghiệm của đạo hàm cấp hai.

Chọn A.

Câu 44: Trắc nghiệm ID: 151121

Điều kiện xác định của hệ phương trình sau \(\left\{ \matrix{{\log _2}({x^2} - 1) + {\log _2}(y - 1) = 1 \hfill \cr {3^x} = {3^y} \hfill \cr}  \right.\) là: 

Xem đáp án

Điều kiện xác định: \(\left\{ \begin{array}{l}{x^2} - 1 > 0\\y - 1 > 0\end{array} \right. \)

\(\Leftrightarrow \left\{ \begin{array}{l}x \in \left( { - \infty ; - 1} \right) \cup \left( {1; + \infty } \right)\\y > 1\end{array} \right.\)

Chọn đáp án B.

Câu 45: Trắc nghiệm ID: 151122

Tính nguyên hàm \(\int {\dfrac{{1 - 2{{\tan }^2}x}}{{{{\sin }^2}x}}\,dx} \) ta thu được: 

Xem đáp án

Ta có: \(\begin{array}{l}\int {\dfrac{{1 - 2{{\tan }^2}x}}{{{{\sin }^2}x}}\,dx} \\ = \int {\left( {\dfrac{1}{{{{\sin }^2}x}} - \dfrac{2}{{{{\cos }^2}x}}} \right)\,dx} \\ = \int {\dfrac{1}{{{{\sin }^2}x}}\,dx - 2\int {\dfrac{1}{{{{\cos }^2}x}}dx} } \\ =  - \cot x - 2\tan x + C\end{array}\)

Chọn đáp án D.

Câu 46: Trắc nghiệm ID: 151123

Hàm số \(f(x) = x\sqrt {x + 1} \) có một nguyên hàm là F(x). Nếu F(0) = 2 thì F(3) bằng bao nhiêu ?

Xem đáp án

Ta có: \(\int {x\sqrt {x + 1} \,dx} \)

Đặt \(t = \sqrt {x + 1}  \Rightarrow {t^2} = x + 1\)\(, \Leftrightarrow x = t{}^2 - 1\)

\( \Rightarrow dx = d\left( {{t^2} - 1} \right) = 2t\,dt\)

Khi đó ta có:

\(\begin{array}{l}\int {x\sqrt {x + 1} \,dx} \\ = \int {\left( {{t^2} - 1} \right)t.2tdt} \\ = 2\int {\left( {{t^4} - {t^2}} \right)dt} \\ = 2\left( {\dfrac{{{t^5}}}{5} - \dfrac{{{t^3}}}{3}} \right) + C\end{array}\)

Với \(\left\{ \begin{array}{l}x = 0 \to t = 1\\x = 3 \to t = 2\end{array} \right.\)         

Theo giải thiết \(F\left( 0 \right) = 2 \Rightarrow 2\left( {\dfrac{1}{5} - \dfrac{1}{3}} \right) + C = 2 \)\(\,\Leftrightarrow C = \dfrac{{34}}{{15}}\)

Khi đó \(F\left( {x = 3} \right) = F\left( {t = 2} \right) \)\(\,= 2\left( {\dfrac{{{2^5}}}{5} - \dfrac{{{2^3}}}{3}} \right) + \dfrac{{34}}{{15}} = \dfrac{{146}}{{15}}.\)

Chọn đáp án A.

Câu 47: Trắc nghiệm ID: 151124

Đáy của hình chóp \(S.ABCD\) là một hình vuông cạnh \(a\). Cạnh bên \(SA\) vuông góc với mặt đáy và có độ dài là \(a\). Thể tích khối tứ diện \(S.BCD\) bằng: 

Xem đáp án

Ta có: \({S_{\Delta BCD}} = \dfrac{1}{2}{S_{ABCD}} = \dfrac{1}{2}{a^2}\)

\({V_{S.BCD}} = \dfrac{1}{3}SA.{S_{BCD}} = \dfrac{1}{3}a.\dfrac{1}{2}{a^2} = \dfrac{{{a^3}}}{6}\)

Chọn A.

Câu 48: Trắc nghiệm ID: 151125

Trong không gian\(Oxyz\), cho 2 điểm \(B(1;2; - 3)\),\(C(7;4; - 2)\). Nếu \(E\) là điểm thỏa mãn đẳng thức \(\overrightarrow {CE}  = 2\overrightarrow {EB} \) thì tọa độ điểm \(E\) là

Xem đáp án

\(E(x;y;z)\), từ \(\overrightarrow {CE}  = 2\overrightarrow {EB}  \Rightarrow \left\{ \begin{array}{l}x = 3\\y = \dfrac{8}{3}\\z =  - \dfrac{8}{3}\end{array} \right..\)

Câu 49: Trắc nghiệm ID: 151126

Tập nghiệm của bất phương trình \({5^x} < 7 - 2x\).

Xem đáp án

Xét hàm số \(f\left( x \right) = {5^x} + 2x\) trên \(\mathbb{R}\) ta có:

\(f'\left( x \right) = {5^x}\ln 5 + 2 > 0\forall x \in \mathbb{R}\)

\( \Rightarrow \)Hàm số đồng biến trên \(\mathbb{R}\)

Mà \(f\left( x \right) < f\left( 1 \right)=7\) nên \(x < 1\)

Chọn đáp án B.

Câu 50: Trắc nghiệm ID: 151127

Cho F(x) là một nguyên hàm của hàm số \(f(x) = {e^x} + 2x\) thỏa mãn \(F(0) = \dfrac{3}{2}\). Tìm F(x).

Xem đáp án

Ta có: \(\int {\left( {{e^x} + 2x} \right)\,} dx = {e^x} + {x^2} + C.\)

Theo giải thiết ta có: \(F\left( 0 \right) = \dfrac{3}{2} \)

\(\Rightarrow {e^0} + {0^2} + C = \dfrac{3}{2} \Rightarrow C = \dfrac{1}{2}\)

Khi đó ta có: \(F\left( x \right) = {e^x} + {x^2} + \dfrac{1}{2}\)

Chọn đáp án B.

Bắt đầu thi để xem toàn bộ câu hỏi trong đề

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »