Các dạng toán phép nhân, chia số nguyên, bội và ước của một số nguyên
I. Thực hiện phép tính nhân, chia hai số nguyên
Khi thực hiện phép tính ta áp dụng các quy tắc sau:
- Quy tắc nhân hai số nguyên
Với \(m,n \in {\mathbb{N}^*}\), ta có:
\(m\left( { - n} \right) = \left( { - n} \right)m = - (m.m)\)
\(\left( { - m} \right)\left( { - n} \right) = \left( { - n} \right)\left( { - m} \right) = mn\)
- Quy tắc dấu của thương:
\(\begin{array}{l}\left( + \right):\left( + \right) = \left( + \right)\\\left( - \right):\left( - \right) = \left( + \right)\\\left( + \right):\left( - \right) = \left( - \right)\\\left( - \right):\left( + \right) = \left( - \right)\end{array}\)
Chú ý:
+ Nếu đổi dấu một thừa số thì tích $ab$ đổi dấu.
+ Nếu đổi dấu hai thừa số thì tích $ab$ không thay đổi.
Chú ý trên vẫn đúng với phép chia.
II. Bài toán đưa về thực hiện phép nhân (chia) hai số nguyên
Bước 1: Căn cứ vào đề bài, suy luận để đưa về phép nhân (chia) hai số nguyên.
Bước 2: Thực hiện phép nhân (chia) hai số nguyên.
Bước 3: Kết luận.
III. Tìm các số nguyên x,y sao cho x.y = a (a thuộc Z)
Phương pháp
- Phân tích số nguyên $a$ thành tích hai số nguyên bằng tất cả các cách có thể.
- Từ đó tìm được $x,y.$
Ví dụ:
Tìm số nguyên \(x,y\) thỏa mãn \(\left( {x - 1} \right)\left( {y + 1} \right) = 3\)
Ta có: \(3 = ( - 1).( - 3) = 1.3\) nên ta có 4 trường hợp sau:
TH1: \(x - 1 = - 1\) và \(y + 1 = - 3\) suy ra \(x = 0\) và \(y = - 4\)
TH2: \(x - 1 = - 3\) và \(y + 1 = - 1\) suy ra \(x = - 2\) và \(y = - 2\)
TH3: \(x - 1 = 1\) và \(y + 1 = 3\) suy ra \(x = 2\) và \(y = 2\)
TH4: \(x - 1 = 3\) và \(y + 1 = 1\) suy ra \(x = 4\) và \(y = 0\)
Vậy \(\left( {x;y} \right) \in \left\{ {\left( {0;\,\, - 4} \right);\,\left( { - 2;\, - 2} \right);\left( {2;\,2} \right);\left( {4;0} \right)} \right\}\).
IV. Bài toán tìm x và tìm số chưa biết trong đẳng thức dạng A.B = 0
- Bài toán tìm x:
+ Muốn tìm số hạng ta lấy tích chia cho số hạng còn lại.
+ Muốn tìm số chia ta lấy sô bị chia chia cho thương.
+ Muốn tìm số bị chia ta lấy thương nhân số chia.
- Dạng toán \(A.B=0\)
+ Nếu $A.B = 0$ thì $A = 0$ hoặc $B = 0.$
+ Nếu $A.B = 0$ mà $A$ (hoặc $B$ ) khác $0$ thì $B$ ( hoặc $A$ ) bằng $0.$
Ví dụ: Tìm \(x\) biết: \(\left( {x - 2} \right).\left( {x + 5} \right) = 0\)
\(\left( {x - 2} \right).\left( {x + 5} \right) = 0 \Rightarrow \)\(x - 2 = 0\) hoặc \(x + 5 = 0\)
Suy ra \(x = 2\) hoặc \(x = - 5\)
Vậy \(x \in \left\{ {2;\, - 5} \right\}\).