Lũy thừa với số mũ tự nhiên

Lý thuyết về lũy thừa với số mũ tự nhiên môn toán lớp 6 sách kết nối tri thức với cuộc sống với nhiều dạng bài cùng phương pháp giải nhanh kèm bài tập vận dụng
(399) 1331 26/09/2022

I. Lũy thừa

Lũy thừa với số mũ tự nhiên

Lũy thừa bậc n của a là tích của n thừa số bằng nhau, mỗi thừa số bằng a:

\({a^n} = a.a \ldots ..a\) (\(n\)  thừa số \(a\) ) (\(n \notin \mathbb{N}^*\) )

\({a^n}\) đọc là “a mũ n” hoặc “a lũy thừa n”.

\(a\)  được gọi là cơ số.

\(n\) được gọi là số mũ.

Phép nhân nhiều thừa số giống nhau như trên được gọi là phép nâng lên lũy thừa.

\({a^1} = a\)

\({a^2} = a.a\)  gọi là “\(a\) bình phương”  (hay bình phương của \(a\)).

\({a^3} = a.a.a\)  gọi là “\(a\) lập phương” (hay lập phương của \(a\)).

Với \(n\) là số tự nhiên khác 0 (thuộc \(\mathbb{N}^*\)), ta có: \({10^n} = 1\underbrace {0...0}_{n{\rm{ \,chữ\, số\, 0}}}\)(số mũ là n thì có n chữ số 0 đằng sau chữ số 1)

Quy ước: \({a^1} = a\); \({a^0} = 1\left( {a \ne 0} \right).\)

Ví dụ:

a) \({8^3}\) đọc là “tám mũ ba”, có cơ số là 8 và số mũ là 3.

b) Tính \({2^3}\).

Số trên là lũy thừa bậc 3 của 2 và là tích của 3 thừa số 2 nhân với nhau nên ta có:

\({2^3} = 2.2.2 = 8\)

c) Tính \({10^3}\)

\({10^3}\) có số mũ là 3 nên \({10^3} = 1000\)(Sau chữ số 1 có 3 chữ số 0).

d) Viết 10 000 000 dưới dạng lũy thừa của 10:

Cách 1: \(10000000 = 10.10.10.10.10.10.10\)\( = {10^7}\)

Cách 2: Sau chữ số 1 có 7 chữ số 0 nên \(10000000 = {10^7}\)

e) Viết 16 dưới dạng lũy thừa cơ số 4:

\(16 = 4.4 = {4^2}\)

II. Nhân hai lũy thừa cùng cơ số

Khi nhân hai lũy thừa cùng cơ số, ta giữ nguyên cơ số và cộng các số mũ.

\({a^m}.{a^n} = {a^{m + n}}\)

Ví dụ:

a) \({3.3^5} = {3^1}{.3^5} = {3^{1 + 5}} = {3^6}.\)

b) \({5^2}{.5^4} = {5^{2 + 4}} = {5^6}\)

c) \({a^3}.{a^5} = {a^{3 + 5}} = {a^8}\)

d) \(x.{x^8} = {x^1}.{x^8} = {x^{1 + 8}} = {x^9}\)

e) \({4^2}.64 = {4^2}.4.4.4 = {4^2}{.4^3} = {4^{2 + 3}} = {4^5}\)

f) \(10.2.5 = 10.\left( {2.5} \right) = 10.10 = {10^2}\) (Sử dụng tính chất kết hợp trong phép nhân trước).

III. Chia hai lũy thừa cùng cơ số

Phép chia hai lũy thừa cùng cơ số

Khi chia hai lũy thừa cùng cơ số (khác 0), ta giữ nguyên cơ sốtrừ các số mũ cho nhau.

\({a^m}:{a^n} = {a^{m - n}}\) \(\left( {a \ne 0;\,m \ge n \ge 0} \right)\)

Ví dụ:

a) \({3^5}:3 = {3^5}:{3^1} = {3^{5 - 1}} = {3^4}\)\( = 3.3.3.3 = 81\)

b) \({a^6}:{a^2} = {a^{6 - 2}} = {a^4}\)

c) \({2^3}:{2^3} = {2^{3 - 3}} = {2^0} = 1\)

d) \(81:{3^2} = {3^4}:{3^2} = {3^{4 - 2}} = {3^2} = 3.3 = 9\)

Lưu ý:

Phép chia hai lũy thừa cùng cơ số không thể lấy hai số mũ chia cho nhau mà phải lấy hai số mũ trừ cho nhau.

(399) 1331 26/09/2022