Anh Bình gửi 200 triệu đồng vào ngân hàng VB với kì hạn cố định 12 tháng và hưởng mức lãi suất là 0,65%/tháng. Tuy nhiên, sau khi gửi được tròn 8 tháng anh Bình có việc phải dùng đến 200 triệu trên. Anh đến ngân hàng đình rút tiền thì được nhân viên ngân hàng tư vấn: “Nếu rút tiền trước hạn, toàn bộ số tiền anh gửi chỉ được hưởng mức lãi suất không kì hạn là 0,02%/tháng. Anh nên thế chấp sổ tiết kiệm đó tại ngân hàng để vay ngân hàng 200 triệu với lãi suất 0,7%/tháng. Khi sổ của anh đến hạn, anh có thể rút tiền để trả nợ ngân hàng”. Nếu làm theo tư vấn của nhân viên ngân hàng, anh Bình sẽ đỡ thiệt một số tiền gần nhất với con số nào dưới đây (biết rằng ngân hàng tính lãi theo thể thức lãi kép)?
A. 10,85 triệu đồng
B. 10,51 triệu đồng
C. 10,03 triệu đồng
D. 10,19 triệu đồng
Lời giải của giáo viên
* Nếu anh Bình nghe theo nhân viên tư vấn ngân hàng
+ Tiền lãi sanh Bình nhận được sau khi gửi 200 triệu trong 12 tháng với mức lãi suất 0,65%/ tháng là \(A = 200\left( {1 + 0,65\% } \right){}^{12} - 200\) (triệu đồng)
+ Tiền lãi anh Bình phải trả khi vay nợ 200 triệu đồng với lãi suất 0,7%/ tháng là \(B = 200{\left( {1 + 0,7\% } \right)^4} - 200\) (triệu đồng)
Tổng số tiền lãi anh Bình nhận được là M = A – B
* Nếu anh Bình rút tiền ngay
Số tiền lãi anh Bình nhận được trong 8 tháng với mức lãi suất 0,02%/ tháng là
\(N = 200\left( {1 + 0,02\% } \right){}^{12} - 200\)
Suy ra nếu làm theo nhân viên tư vấn ngân hàng thì anh Bình sẽ đỡ thiệt số tiền là \(M - N \approx 10.19\) triệu đồng.
CÂU HỎI CÙNG CHỦ ĐỀ
Với n là số nguyên dương, biểu thức \(T = C_n^0 + C_n^1 + ... + C_n^n\) bằng
Tiếp tuyến của đồ thị hàm số \(y = \frac{{ - x + 1}}{{3x - 2}}\) tại giao điểm của đồ thị hàm số với trục tung có hệ số góc là:
Tìm đạo hàm của hàm số \(y = \ln \left( {1 + {e^{2x}}} \right).\)
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ. Tìm kết luận đúng
Hàm số \(y = 2{x^3} - {x^2} + 5\) có điểm cực đại là:
Cho hàm số \(f(x)\) có đồ thị như hình vẽ bên. Bất phương trình \(f\left( {{e^x}} \right) < m\left( {3{e^x} + 2019} \right)\) có nghiệm \(x \in (0;1)\) khi và chỉ khi
Bảng biến thiên ở hình bên là của một trong bốn hàm số dưới đây. Tìm hàm số đó.
Một khối lăng trụ tứ giác đều có thể tích là 4. Nếu gấp đôi các cạnh đáy đồng thời giảm chiều cao của khối lăng trụ này hai lần thì được khối lăng trụ mới có thể tích là:
Cho hàm số \(f(x)\) có đạo hàm \(f'\left( x \right) = x{\left( {x - 1} \right)^2}{\left( {x - 2} \right)^3}{\left( {x - 3} \right)^4}.\) Số điểm cực trị của hàm số đã cho là
Cho a, b là hai số thực dương tùy ý và \(b \ne 1.\) Tìm kết luận đúng.
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ bên. Hàm số đã cho đồng biến trên khoảng nào sau đây?
Có bao nhiêu số nguyên dương là ước của 2592 hoặc là ước của 2916?
Mỗi bạn An , Bình chọn ngẫu nhiên 3 chữ số trong tập \(\left\{ {0,1,2,3,4,5,6,7,8,9} \right\}.\) Tính xác suất để trong hai bộ ba chữ số mà An, Bình chọn ra có đúng một chữ số giống nhau.
Cho hình chóp tứ giác đều S.ABCD có đáy là hình vuông tâm O cạnh 2a. Thể tích khối chóp S.ABCD bằng \(4a^3\). Tính khoảng cách từ điểm O tới mặt bên của hình chóp.
Cho \(n, k\) là những số nguyên thỏa mãn \(0 \le k \le n\) và \(n \ge 1.\) Tìm khẳng định sai.