Lời giải của giáo viên
\(\begin{array}{l}
\sum\limits_{k = 1}^{100} {\left( {k{{.2}^k}} \right) = \left( {2 + {2^2} + ... + {2^{100}}} \right) + \left( {{2^2} + {2^3} + ... + {2^{100}}} \right) + ... + {2^{100}}} \\
= 2\left( {{2^{100}} - 1} \right) + {2^2}\left( {{2^{99}} - 1} \right) + ... + {2^{99}}({2^2} - 1) + {2^{100}}(2 - 1)\\
= {100.2^{101}} - \left( {2 + {2^2} + ... + {2^{100}}} \right) = {100.2^{101}} - 2\left( {{2^{100}} - 1} \right)\\
= {99.2^{101}} + 2\\
\Rightarrow {\log _2}\left( {\sum\limits_{k = 1}^{100} {\left( {k{{.2}^k}} \right)} } \right) = {\log _2}\left( {{{99.2}^{101}}} \right) = 101 + {\log _2}99\\
\Rightarrow a = 101,b = 99,c = 2 \Rightarrow a + b + c = 202
\end{array}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình chóp đều S.ABC có độ dài cạnh đáy bằng 2, điểm M thuộc cạnh SA sao cho SA=4SM và SA vuông góc với mặt phẳng ABCD. Thể tích V của khối chóp S.ABC là
Cho hình chóp S.ABĐ có đáy ABCD là hình chữ nhật, \(AB = AD\sqrt 2 ,\,\,SA \bot \left( {ABC} \right)\). Gọi M là trung điểm của AB. Góc giữa hai mặt phẳng (SAC) và (SDM) bằng
Tìm giá trị lớn nhất của hàm số \(y = x - {e^{2x}}\) trên đoạn \(\left[ { - 1;1} \right]\).
Cho \(a = {\log _2}5\). Tính \({\log _4}1250\) theo \(a\).
Thể tích của khối chóp có diện tích đáy bằng 6 và chiều cao bằng 4 là
Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường tròn \((C_1)\) và \((C_2)\) lần lượt có phương trình \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 1\) và \({\left( {x + 1} \right)^2} + {y^2} = 1\). Biết đồ thị hàm số \(y = \frac{{ax + b}}{{x + c}}\) đi qua tâm của \((C_1)\), đi qua tâm của \(( C_2)\) và có các đường tiệm cận tiếp xúc với cả \((C_1)\) và \((C_2)\). Tổng \(a+b+c\) là
Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) \(\left( {a \ne 0} \right)\) có đồ thị như hình dưới đây.
Khẳng định nào dưới đây đúng?
Bất phương trình \({\log _3}\left( {{x^2} - 2x} \right) > 1\) có tập nghiệm là
Hàm số \(y = \frac{1}{3}{x^3} + {x^2} - 3x + 1\) đạt cực tiểu tại điểm
Tính thể tích \(V\) của khối chóp tứ giác đều \(S.ABCD\) mà \(SAC\) là tam giác đều cạnh \(a\).
Cho hàm số \(f\left( x \right) = \ln x - x\). Khẳng định nào dưới đây đúng?
Số nghiệm của phương trình \({50^x} + {2^{x + 5}} = {3.7^x}\) là
Với \(a\) là số thực dương khác 1 tùy ý, \({\log _{{a^2}}}{a^3}\) bằng
Tập xác định của hàm số \(y = {\left( {x - 1} \right)^{ - 4}}\) là