Cho 2 số phức \({{z}_{1}}=3-4i\,\,;\,\,{{z}_{2}}=4-i\). Số phức z = \(\frac{{{z}_{1}}}{{{z}_{2}}}\) bằng:
A. \(\frac{{16}}{{17}} - \frac{{13}}{{17}}i.\)
B. \(\frac{8}{{15}} - \frac{{13}}{{15}}i.\)
C. \(\frac{{16}}{5} - \frac{{13}}{5}i.\)
D. \(\frac{{16}}{{25}} + \frac{{13}}{{25}}i.\)
Lời giải của giáo viên
\(\frac{{{z_1}}}{{{z_2}}} = \frac{{3 - 4i}}{{4 - i}} = \frac{{(3 - 4i)(4 + i)}}{{(4 - i)(4 + i)}} = \frac{{16 - 13i}}{{17}} = \frac{{16}}{{17}} - \frac{{13}}{{17}}i\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số y=f(x) có đồ thị như hình vẽ bên. Số nghiệm của phương trình \(2f\left( x \right)+1=0\) là
Cho cấp số cộng \(\left( {{u}_{n}} \right)\) với công sai d=3 và \({{u}_{2}}=9\). Số hạng \({{u}_{1}}\) của cấp số cộng bằng
Có bao nhiêu giá trị nguyên âm của m để hàm số \(y={{x}^{4}}-4{{x}^{3}}+\left( m+25 \right)x-1\) đồng biến trên khoảng \(\left( 1;+\infty \right)\).
Xét các số thực a và b thỏa mãn \({{2}^{a}}{{.4}^{b}}=8.\) Mệnh đề nào dưới đây đúng?
Cho hàm số f(x) có bảng xét dấu của \(f^{\prime}(x)\) như sau:
Số điểm cực trị của hàm số đã cho là
Cho hàm số y = f(x) có bảng biến thiên sau
Số nghiệm của phương trình 2f(x) - 1 = 0 là
Giá trị lớn nhất của hàm số \(f(x)=\frac{x-2}{x+3}\) trên đoạn [-1 ; 2] bằng
Số giao điểm của đồ thị hàm số \(\left( c \right):y={{x}^{4}}-5{{x}^{2}}+4\) và trục hoành là
Có bao nhiêu cặp số nguyên dương \(\left( {x;y} \right)\) với \(x \le 2020\) thỏa mãn điều kiện \({\log _2}\frac{{x + 2}}{{y + 1}} + {x^2} + 4x = 4{y^2} + 8y + 1\).
Cho hàm số \(y=g\left( x \right)\) xác định và liên tục trên khoảng \(\left( -\infty ;+\infty\right),\) có bảng biến thiên như hình sau:
Mệnh đề nào sau đây đúng?
Tìm tập nghiệm của bất phương trình \({\left( {\frac{1}{2}} \right)^x} \ge 2\)
Cho tích phân \(I=\int\limits_{1}^{e}{\frac{\ln x}{x\sqrt{3{{\ln }^{2}}x+1}}dx}\). Nếu đặt \(t=\sqrt{3{{\ln }^{2}}x+1}\) thì khẳng định nào sau đây là khẳng định đúng?
Gọi \({{z}_{0}}\) là nghiệm có phần ảo dương của phương trình \({{z}^{2}}+2z+5=0.\) Điểm biểu diễn của số phức \({{z}_{0}}+3i\) là
Cho khối nón có chiều cao h = 3, bán kính r = 4. Độ dài đường sinh của khối nón bằng