Cho ba điểm \(A( - 2;0;0),\;B\left( {0;1;0} \right),\;C\left( {0;0; - 3} \right).\) Đường thẳng đi qua trực tâm \(H\) của tam giác \(ABC\) và vuông góc với \({\rm{mp}}\left( {ABC} \right)\) có phương trình là
A. \(\left\{ \begin{array}{l}x = 2 - 2t\\y = - 1 + t\\z = 3 - 3t\end{array} \right..\)
B. \(\left\{ \begin{array}{l}x = 3 - 3t\\y = - 6 + 6t\\z = 2 - 2t\end{array} \right..\)
C. \(\left\{ \begin{array}{l}x = 3 - 3t\\y = 6 + 6t\\z = 2 - 2t\end{array} \right..\)
D. \(\left\{ \begin{array}{l}x = - 6 + 6t\\y = 3 - 3t\\z = 2 - 2t\end{array} \right..\)
Lời giải của giáo viên
Dễ thấy các điểm \(A,B,C\) lần lượt thuộc các trục tọa độ nên \(OABC\) là tứ diện vuông tại \(O\).
Do đó đường thẳng \(OH\) đi qua \(O\) và vuông góc mặt phẳng \(\left( {ABC} \right)\) hay nhận \(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( { - 3;6; - 2} \right)\) làm VTCP. Khi đó \(OH:\left\{ \begin{array}{l}x = - 3t\\y = 6t\\x = - 2t\end{array} \right.\).
Kiểm tra các đáp án ta loại được A, D.
Đáp án B: Kiểm tra điểm \(O\) thuộc đường thẳng (ứng với \(t = 1\)) nên đường thẳng ở đáp án B trung với \(OH\).
Chọn B.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho \({\log _2}b = 4,\,\;{\log _2}c = - 4;\) khi đó \({\log _2}({b^2}c)\) bằng
Tích các nghiệm thực của phương trình \(\log _2^2x + \sqrt {3 - {{\log }_2}x} = 3\) bằng
Mặt phẳng \(\left( P \right):2x - y + 3z - 1 = 0\) có một vectơ pháp tuyến là
Trong không gian\(Oxyz,\) cho \(\vec u = 3\vec i - 2\vec j + 2\vec k\). Tọa độ của \(\vec u\) là
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình bên. Tổng giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(g\left( x \right) = f\left( {2\sin \,\dfrac{x}{2}\cos \dfrac{x}{2} + 3} \right)\) bằng
Cho hàm số \(y = f(x)\) có bảng biến thiên như hình bên. Số nghiệm của phương trình \(3f(x) - 2 = 0\) là
Cho hàm số \(y = {\log _a}x,\,\,\,0 < a \ne 1\). Khẳng định nào sau đây đúng?
Cho hàm số \(f(x)\) thỏa mãn \(f\left( x \right) + 2\sqrt x f'\left( x \right) = 3x{e^{ - \sqrt x }},\forall x \in \left[ {0; + \infty } \right).\) Giá trị \(f(1)\) bằng
Tập xác định của hàm số \(y = {\left( {{3^x} - 9} \right)^{ - 2}}\) là
Cho hai điểm \(A( - 1;0;1),B( - 2;1;1).\) Phương trình mặt phẳng trung trực của đoạn \(AB\) là
Họ các nguyên hàm \(F(x)\) của hàm số \(f(x) = 3\sin x + \dfrac{2}{x} - {e^x}\) là
Với \(k\) và \(n\) là hai số nguyên dương tùy ý thỏa mãn \(k \le n\). Mệnh đề nào dưới đây đúng?
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau: Mệnh đề nào dưới đây sai?
Giả sử \(a,b\) là các số thực sao cho \({x^3} + {y^3} = a{.10^{3z}} + b{.10^{2z}}\) đúng với mọi các số thực dương \(x,y,z\) thoả mãn \(\log \left( {x + y} \right) = z\) và \(\log \left( {{x^2} + {y^2}} \right) = z + 1.\) Giá trị của \(a + b\) bằng
Cho hình nón đỉnh \(S\) có bán kính đáy bằng \(a\sqrt 2 .\) Mặt phẳng \(\left( P \right)\) qua \(S\) cắt đường tròn đáy tại \(A,B\) sao cho \(AB = 2a.\) Biết rằng khoảng cách từ tâm đường tròn đáy đến mặt phẳng \(\left( P \right)\) là \(\dfrac{{4a\sqrt {17} }}{{17}}.\) Thể tích khối nón bằng