Cho biết \(\int\limits_{0}^{3}{f\left( x \right)}\text{d}x=3,\,\,\int\limits_{0}^{5}{f\left( t \right)}\text{d}t=10\). Tính \(\int\limits_{3}^{5}{2f\left( z \right)}\text{d}z\).
A. \(\int\limits_3^5 {2f\left( z \right)} {\rm{d}}z = - 7\)
B. \(\int\limits_3^5 {2f\left( z \right)} {\rm{d}}z = 14\)
C. \(\int\limits_3^5 {2f\left( z \right)} {\rm{d}}z = 13\)
D. \(\int\limits_3^5 {2f\left( z \right)} {\rm{d}}z = 7\)
Lời giải của giáo viên
\(\int\limits_3^5 {2f\left( z \right)} {\rm{d}}z = 2\int\limits_3^5 {f\left( z \right)} {\rm{d}}z = 2\left[ {\int\limits_0^5 {f\left( z \right)} {\rm{d}}z - \int\limits_0^3 {f\left( z \right)} {\rm{d}}z} \right] = 2\left( {10 - 3} \right) = 14\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right)=\ln \left( {{x}^{4}}+2x \right)\). Đạo hàm \({f}'\left( 1 \right)\) bằng
Diện tích xung quanh của hình trụ có bán kính đáy R=4cm và đường sinh l=5cm bằng:
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có một nguyên hàm là \(F\left( x \right)\). Biết \(F\left( 1 \right)=8\), giá trị \(F\left( 9 \right)\) được tính bằng công thức
Tìm tập hợp tất cả các giá trị tham số m để phương trình \({{4}^{{{x}^{2}}-2x+1}}-m{{.2}^{{{x}^{2}}-2x+2}}+3m-2=0\) có 4 nghiệm phân biệt.
Cho hàm số \(y=\frac{3x}{5x-2}\). Khẳng định nào sau đây đúng?
Cho hàm số \(f\left( x \right)\) xác định và có đạo hàm \({f}'\left( x \right)\) liên tục trên \(\left[ 1\,;\,3 \right],f\left( x \right)\ne 0\) với mọi \(x\in \left[ 1\,;3 \right]\), đồng thời \({f}'\left( x \right){{\left[ 1+f\left( x \right) \right]}^{2}}={{\left[ {{\left( f\left( x \right) \right)}^{2}}\left( x-1 \right) \right]}^{2}}\) và \(f\left( 1 \right)=-1\). Biết rằng \(\int\limits_{1}^{3}{f\left( x \right)\text{d}x}=a\ln 3+b\,\,\,\left( a\in \mathbb{Z},\,\,b\in \mathbb{Z} \right)\), tính tổng \(S=a+{{b}^{2}}\).
Cho số phức \(z=5-2i\). Tìm số phức \(w=iz+\overline{z}\).
Trong không gian Oxyz, mặt cầu \(\left( S \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-8x+2y+1=0\) có tọa độ tâm I và bán kính R lần lượt là
Điểm \(A\) trong hình bên dưới là điểm biểu diễn số phức \(z\).
Mệnh đề nào dưới đây đúng?
Cho hàm số \(f\left( x \right)={{x}^{4}}\). Hàm số \(g\left( x \right)=f'\left( x \right)-3{{x}^{2}}-6x+1\) đạt cực tiểu, cực đại lần lượt tại \({{x}_{1}},\text{ }{{\text{x}}_{2}}\). Tính \(m=g\left( x{{ }_{1}} \right)g\left( {{x}_{2}} \right)\).
Gọi \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)={{\text{e}}^{-x}}+\cos x\). Tìm khẳng định đúng.
Cho hàm số \(y=\frac{x-1}{x+2}\). Mệnh đề nào sau đây là mệnh đề đúng?
Cho hình chóp tứ giác đều có cạnh đáy bằng 2a, cạnh bên bằng 3a. Gọi \(\alpha \) là góc giữa mặt bên và mặt đáy, mệnh đề nào dưới đây đúng?
Giá trị nhỏ nhất của hàm số \(y={{x}^{3}}-2{{x}^{2}}-4x+5\) trên đoạn \(\left[ 1\,;\,3 \right]\) bằng
Cho số phức z thỏa mãn \(\left| z+1 \right|=\sqrt{3}\). Tìm giá trị lớn nhất của \(T=\left| z+4-i \right|+\left| z-2+i \right|\).