Lời giải của giáo viên
Ta có: \({{a}^{2}}+{{b}^{2}}+{{c}^{2}}-2a-4b=4\Leftrightarrow {{\left( a-1 \right)}^{2}}+{{\left( b-2 \right)}^{2}}+{{c}^{2}}=9\)
Áp dụng bất đẳng thức giá trị tuyệt đối và bất đẳng thức BCS, ta có kết quả sau:
\(\begin{align} & \left| 2a+b-2c+7 \right|=\left| 2\left( a-1 \right)+\left( b-2 \right)-2c+11 \right|\le \left| 2\left( a-1 \right)+\left( b-2 \right)-2c \right|+11 \\ & \overset{BCS}{\mathop \le }\,\sqrt{\left[ {{\left( a-1 \right)}^{2}}+{{\left( b-2 \right)}^{2}}+{{c}^{2}} \right]\left[ {{2}^{2}}+{{1}^{2}}+{{\left( -2 \right)}^{2}} \right]}+11=20. \\ \end{align} \)
Đẳng thức xảy ra khi:
\(\left\{ \begin{array}{l} 2\left( {a - 1} \right) + \left( {b - 2} \right) - 2c > 0\\ \frac{{a - 1}}{2} = \frac{{b - 2}}{1} = \frac{c}{{ - 2}}\\ {\left( {a - 1} \right)^2} + {\left( {b - 2} \right)^2} + {c^2} = 9 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} a = 3\\ b = 3\\ c = - 2 \end{array} \right.\)
Khi đó: \(P=a+2b+3c=3+2.3+3.\left( -2 \right)=3.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x-2y+2z-1=0\). Khoảng cách từ điểm \(A\left( 1;-2;1 \right)\) đến mặt phẳng \(\left( P \right)\) bằng
Cho số phức z có \(\left| z \right|=2\) thì số phức \(\text{w}=z+3i\) có modun nhỏ nhất và lớn nhất lần lượt là:
Tìm các giá trị của tham số m để hàm số \(y=\frac{1}{2}\ln \left( {{x}^{2}}+4 \right)-mx+3\) nghịch biến trên khoảng \(\left( -\infty ;+\infty \right)\).
Cho hình thang ABCD vuông tại A và D, AD=CD=a, AB=2a. Quay hình thang ABCD quanh cạnh AB, thể tích khối tròn xoay thu được là :
Cho hàm số \(f\left( x \right)={{x}^{3}}+a{{x}^{2}}+bx+c\) thỏa mãn c>2019, a+b+c-2018<0. Số điểm cực trị của hàm số \(y=\left| f(x)-2019 \right|\) là
Trong không gian \(Oxyz\), cho đường thẳng \(d:\frac{x+1}{1}=\frac{z-1}{-1}=\frac{y-3}{2}\). Một vectơ chỉ phương của \(d\) là
Cho hai số phức z1 = 1+i và z2 = 2-3i. Tính mô đun của số phức z1 + z2
Cho hàm số \(y=f\left( x \right)\) và \(y=g\left( x \right)\) liên tục trên đoạn \(\left[ 1;5 \right]\) sao cho \(\int\limits_{1}^{5}{f\left( x \right)\text{d}x}=2\) và \(\int\limits_{1}^{5}{g\left( x \right)\text{d}x}=-4\). Giá trị của \(\int\limits_{1}^{5}{\left[ g\left( x \right)-f\left( x \right) \right]\text{d}x}\) là
Họ nguyên hàm của hàm số \(f(x)=\frac{x+3}{{{x}^{2}}+3\text{x}+2}\) là:
Trong hình dưới đây, điểm \(B\) là trung điểm của đoạn thẳng AC. Khẳng định nào sau đây là đúng?
Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y = x\left( {2017 + \sqrt {2019 – {x^2}} } \right)\) trên tập xác định của nó. Tính M – m.
Trong không gian Oxyz, cho điểm \(M\left( 1;1;1 \right)\). Mặt phẳng \(\left( P \right)\) đi qua M và cắt chiều dương của các trục Ox,Oy,Oz lần lượt tại các điểm \(A\left( a;0;0 \right),B\left( 0;b;0 \right),C\left( 0;0;c \right)\) thỏa mãn OA=2OB và thể tích khối tứ diện OABC đạt giá trị nhỏ nhất. Tính S=2a+b+3c.
Tìm số giá trị nguyên thuộc đoạn \(\left[ -2019\,;2019 \right]\) của tham số \(m\) để đồ thị hàm số \(y=\frac{\sqrt{x-3}}{{{x}^{2}}+x-m}\) có đúng hai đường tiệm cận.
Cho không gian Oxyz, cho điểm \(A\left( 0;1;2 \right)\) và hai đường thẳng \({{d}_{1}}:\left\{ \begin{align} & x=1+t \\ & y=-1-2t \\ & z=2+t \\ \end{align} \right.\), \({{d}_{2}}:\frac{x}{2}=\frac{y-1}{1}=\frac{z+1}{-1}\). Viết phương trình mặt phẳng \(\left( \alpha \right)\) đi qua A và song song với hai đường thẳng \({{d}_{1}},{{d}_{2}}\).
Cho hàm số \(y=f(x)\) có bảng biến thiên như hình bên.
Hàm số đã cho đồng biến trên khoảng nào dưới đây?