Câu hỏi Đáp án 2 năm trước 32

Cho đường thẳng \(d:\dfrac{{x - 1}}{1} = \dfrac{{y - 1}}{2} = \dfrac{{z - 1}}{2}\) và hai điểm \(A\left( {2;0; - 3} \right),B\left( {2; - 3;1} \right).\) Đường thẳng \(\Delta \) qua \(A\) và cắt \(d\) sao cho khoảng cách từ \(B\) đến \(\Delta \) nhỏ nhất. Phương trình của \(\Delta \) là 

A. \(\dfrac{x}{2} = \dfrac{{y + 1}}{{ - 1}} = \dfrac{{z - 1}}{2}.\)  

B. \(\dfrac{x}{2} = \dfrac{{y + 1}}{1} = \dfrac{{z - 1}}{{ - 2}}.\) 

C. \(\dfrac{x}{2} = \dfrac{{y + 1}}{1} = \dfrac{{z + 1}}{{ - 2}}.\)

Đáp án chính xác ✅

D. \(\dfrac{x}{2} = \dfrac{{y + 1}}{{ - 1}} = \dfrac{{z + 1}}{2}.\)

Lời giải của giáo viên

verified HocOn247.com

Gọi \(C\left( {1 + t;1 + 2t;1 + 2t} \right)\) là giao điểm của \(\Delta \) và \(d\). Khi đó \(\overrightarrow {AC}  = \left( {t - 1;2t + 1;2t + 4} \right)\).

\(\overrightarrow {BA}  = \left( {0;3; - 4} \right),\overrightarrow {AC}  = \left( {t - 1;2t + 1;2t + 4} \right) \Rightarrow \left[ {\overrightarrow {BA} ,\overrightarrow {AC} } \right] = \left( {14t + 16; - 4t + 4; - 3t + 3} \right)\)

\(d\left( {B,\Delta } \right) = \dfrac{{\left| {\left[ {\overrightarrow {BA} ,\overrightarrow {AC} } \right]} \right|}}{{\left| {\overrightarrow {AC} } \right|}} = \dfrac{{\sqrt {{{\left( {14t + 16} \right)}^2} + {{\left( { - 4t + 4} \right)}^2} + {{\left( { - 3t + 3} \right)}^2}} }}{{\sqrt {{{\left( {t - 1} \right)}^2} + {{\left( {2t + 1} \right)}^2} + {{\left( {2t + 4} \right)}^2}} }}\)

Dùng MTCT (chức năng TABLE) nhập hàm \(f\left( x \right) = \dfrac{{{{\left( {14x + 16} \right)}^2} + {{\left( { - 4x + 4} \right)}^2} + {{\left( { - 3x + 3} \right)}^2}}}{{{{\left( {x - 1} \right)}^2} + {{\left( {2x + 1} \right)}^2} + {{\left( {2x + 4} \right)}^2}}}\)

Bước START nhập \( - 5\), bước END nhập \(5\) và bước STEP nhập \(1\).

Ta được kết quả \(f\left( x \right)\) min tại \(x =  - 1\) hay \(d\left( {B,\Delta } \right)\) min khi \(t =  - 1\).

Từ đó \(C\left( {0; - 1; - 1} \right)\) và \(\overrightarrow {CA}  = \left( {2;1; - 2} \right)\) nên \(AC\) có phương trình \(\dfrac{x}{2} = \dfrac{{y + 1}}{1} = \dfrac{{z + 1}}{{ - 2}}.\)

Chọn C.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho \({\log _2}b = 4,\,\;{\log _2}c =  - 4;\) khi đó \({\log _2}({b^2}c)\) bằng 

Xem lời giải » 2 năm trước 44
Câu 2: Trắc nghiệm

Mặt phẳng \(\left( P \right):2x - y + 3z - 1 = 0\) có một vectơ pháp tuyến là 

Xem lời giải » 2 năm trước 40
Câu 3: Trắc nghiệm

Trong không gian\(Oxyz,\) cho \(\vec u = 3\vec i - 2\vec j + 2\vec k\). Tọa độ của \(\vec u\) là  

Xem lời giải » 2 năm trước 40
Câu 4: Trắc nghiệm

Cho hàm số \(f(x)\) thỏa mãn \(f\left( x \right) + 2\sqrt x f'\left( x \right) = 3x{e^{ - \sqrt x }},\forall x \in \left[ {0; + \infty } \right).\) Giá trị \(f(1)\) bằng 

Xem lời giải » 2 năm trước 39
Câu 5: Trắc nghiệm

Cho hai điểm \(A( - 1;0;1),B( - 2;1;1).\) Phương trình mặt phẳng trung trực của đoạn \(AB\) là 

Xem lời giải » 2 năm trước 37
Câu 6: Trắc nghiệm

Cho hàm số \(y = {\log _a}x,\,\,\,0 < a \ne 1\). Khẳng định nào sau đây đúng? 

Xem lời giải » 2 năm trước 37
Câu 7: Trắc nghiệm

Tập xác định của hàm số \(y = {\left( {{3^x} - 9} \right)^{ - 2}}\) là 

Xem lời giải » 2 năm trước 37
Câu 8: Trắc nghiệm

Với \(k\) và \(n\) là hai số nguyên dương tùy ý thỏa mãn \(k \le n\). Mệnh đề nào dưới đây đúng? 

Xem lời giải » 2 năm trước 37
Câu 9: Trắc nghiệm

Họ các nguyên hàm \(F(x)\) của hàm số \(f(x) = 3\sin x + \dfrac{2}{x} - {e^x}\) là 

Xem lời giải » 2 năm trước 36
Câu 10: Trắc nghiệm

Giả sử \(a,b\) là các số thực sao cho \({x^3} + {y^3} = a{.10^{3z}} + b{.10^{2z}}\) đúng với mọi các số thực dương \(x,y,z\) thoả mãn \(\log \left( {x + y} \right) = z\) và \(\log \left( {{x^2} + {y^2}} \right) = z + 1.\) Giá trị của \(a + b\) bằng 

Xem lời giải » 2 năm trước 36
Câu 11: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) liên tục trên \({\rm{[}}1;2{\rm{]}}.\) Quay hình phẳng \(\left( H \right) = \left\{ {y = f(x),y = 0,x = 1,x = 2} \right\}\) xung quanh trục \(Ox\) được khối tròn xoay có thể tích 

Xem lời giải » 2 năm trước 35
Câu 12: Trắc nghiệm

Cho hình nón đỉnh \(S\) có bán kính đáy bằng \(a\sqrt 2 .\) Mặt phẳng \(\left( P \right)\) qua \(S\) cắt  đường tròn đáy tại \(A,B\) sao cho \(AB = 2a.\) Biết rằng khoảng cách từ tâm đường tròn đáy đến mặt phẳng \(\left( P \right)\) là \(\dfrac{{4a\sqrt {17} }}{{17}}.\) Thể tích khối nón bằng  

Xem lời giải » 2 năm trước 35
Câu 13: Trắc nghiệm

Cho lăng trụ tam giác đều \(ABC.A'B'C'\) có cạnh đáy bằng \(2a,\) \(O\) là trọng tâm tam giác \(ABC\) và \(A'O = \dfrac{{2a\sqrt 6 }}{3}.\) Thể tích của khối lăng trụ \(ABC.A'B'C'\) bằng  

Xem lời giải » 2 năm trước 35
Câu 14: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình bên. Tổng giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(g\left( x \right) = f\left( {2\sin \,\dfrac{x}{2}\cos \dfrac{x}{2} + 3} \right)\) bằng

Xem lời giải » 2 năm trước 35
Câu 15: Trắc nghiệm

Cho hàm số \(y = f(x)\) có bảng biến thiên trên đoạn \(\left[ { - 1;5} \right]\) như hình vẽ. Có bao nhiêu giá trị nguyên của \(m\) để phương trình \(f\left( {3\sin x + 2} \right) = m\) có đúng 3 nghiệm phân biệt trên khoảng \(\left( { - \dfrac{\pi }{2};\pi } \right)\)? 

Xem lời giải » 2 năm trước 35

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »