Cho đường thẳng \(d:\dfrac{x}{6} = \dfrac{{y - 1}}{3} = \dfrac{z}{2}\) và ba điểm \(A(2;0;0),\;B(0;4;0),\;C(0;0;6).\) Điểm \(M(a;b;c) \in d\) thỏa mãn \(MA + 2MB + 3MC\) đạt giá trị nhỏ nhất. Tính \(S = a + b + c.\)
A. \(S = \dfrac{{148}}{{49}}.\)
B. \(S = \dfrac{{49}}{{148}}.\)
C. \(S = - \dfrac{{50}}{{49}}.\)
D. \(S = - \dfrac{{49}}{{50}}.\)
Lời giải của giáo viên
Ta có: \(d:\left\{ \begin{array}{l}x = 6t\\y = 1 + 3t\\z = 2t\end{array} \right.\) nên \(M \in d \Rightarrow M\left( {6t;3t + 1;2t} \right)\).
Khi đó \(MA = \sqrt {{{\left( {2 - 6t} \right)}^2} + {{\left( {1 + 3t} \right)}^2} + {{\left( {2t} \right)}^2}} = \sqrt {49{t^2} - 18t + 5} = \sqrt {{{\left( {7t - \dfrac{9}{7}} \right)}^2} + \dfrac{{164}}{{49}}} \ge \dfrac{{2\sqrt {41} }}{7}\)
\(\begin{array}{l}MB = \sqrt {{{\left( {6t} \right)}^2} + {{\left( {3 - 3t} \right)}^2} + {{\left( {2t} \right)}^2}} = \sqrt {49{t^2} - 18t + 9} = \sqrt {{{\left( {7t - \dfrac{9}{7}} \right)}^2} + \dfrac{{360}}{{49}}} \ge \dfrac{{6\sqrt {10} }}{7}\\MC = \sqrt {{{\left( {6t} \right)}^2} + {{\left( {1 + 3t} \right)}^2} + {{\left( {6 - 2t} \right)}^2}} = \sqrt {49{t^2} - 18t + 37} = \sqrt {{{\left( {7t - \dfrac{9}{7}} \right)}^2} + \dfrac{{1732}}{{49}}} \ge \dfrac{{2\sqrt {433} }}{7}\\ \Rightarrow MA + 2MB + 3MC \ge \dfrac{{2\sqrt {41} + 12\sqrt {10} + \sqrt {433} }}{7}\end{array}\)
Dấu "=" xảy ra \( \Leftrightarrow 7t - \dfrac{9}{7} = 0 \Leftrightarrow t = \dfrac{9}{{49}} \Rightarrow M\left( {\dfrac{{54}}{{49}};\dfrac{{76}}{{49}};\dfrac{{18}}{{49}}} \right) \Rightarrow a + b + c = \dfrac{{148}}{{149}}\).
Chọn A.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho \({\log _2}b = 4,\,\;{\log _2}c = - 4;\) khi đó \({\log _2}({b^2}c)\) bằng
Mặt phẳng \(\left( P \right):2x - y + 3z - 1 = 0\) có một vectơ pháp tuyến là
Trong không gian\(Oxyz,\) cho \(\vec u = 3\vec i - 2\vec j + 2\vec k\). Tọa độ của \(\vec u\) là
Cho hàm số \(f(x)\) thỏa mãn \(f\left( x \right) + 2\sqrt x f'\left( x \right) = 3x{e^{ - \sqrt x }},\forall x \in \left[ {0; + \infty } \right).\) Giá trị \(f(1)\) bằng
Cho hai điểm \(A( - 1;0;1),B( - 2;1;1).\) Phương trình mặt phẳng trung trực của đoạn \(AB\) là
Cho hàm số \(y = {\log _a}x,\,\,\,0 < a \ne 1\). Khẳng định nào sau đây đúng?
Tập xác định của hàm số \(y = {\left( {{3^x} - 9} \right)^{ - 2}}\) là
Với \(k\) và \(n\) là hai số nguyên dương tùy ý thỏa mãn \(k \le n\). Mệnh đề nào dưới đây đúng?
Giả sử \(a,b\) là các số thực sao cho \({x^3} + {y^3} = a{.10^{3z}} + b{.10^{2z}}\) đúng với mọi các số thực dương \(x,y,z\) thoả mãn \(\log \left( {x + y} \right) = z\) và \(\log \left( {{x^2} + {y^2}} \right) = z + 1.\) Giá trị của \(a + b\) bằng
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình bên. Tổng giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(g\left( x \right) = f\left( {2\sin \,\dfrac{x}{2}\cos \dfrac{x}{2} + 3} \right)\) bằng
Cho hình nón đỉnh \(S\) có bán kính đáy bằng \(a\sqrt 2 .\) Mặt phẳng \(\left( P \right)\) qua \(S\) cắt đường tròn đáy tại \(A,B\) sao cho \(AB = 2a.\) Biết rằng khoảng cách từ tâm đường tròn đáy đến mặt phẳng \(\left( P \right)\) là \(\dfrac{{4a\sqrt {17} }}{{17}}.\) Thể tích khối nón bằng
Cho hàm số \(y = f(x)\) có bảng biến thiên trên đoạn \(\left[ { - 1;5} \right]\) như hình vẽ. Có bao nhiêu giá trị nguyên của \(m\) để phương trình \(f\left( {3\sin x + 2} \right) = m\) có đúng 3 nghiệm phân biệt trên khoảng \(\left( { - \dfrac{\pi }{2};\pi } \right)\)?
Họ các nguyên hàm \(F(x)\) của hàm số \(f(x) = 3\sin x + \dfrac{2}{x} - {e^x}\) là
Cho hàm số \(y = f\left( x \right)\) liên tục trên \({\rm{[}}1;2{\rm{]}}.\) Quay hình phẳng \(\left( H \right) = \left\{ {y = f(x),y = 0,x = 1,x = 2} \right\}\) xung quanh trục \(Ox\) được khối tròn xoay có thể tích
Trong không gian Oxyz, cho điểm \(M\left( {2017;2018;2019} \right)\). Hình chiếu vuông góc của điểm M trên trục Oz có tọa độ là: