Câu hỏi Đáp án 2 năm trước 34

Cho hai số thực \(x,y\) thay đổi thỏa mãn \(x+y+1=2\left( \sqrt{x-2}+\sqrt{y+3} \right)\).Giá trị lớn nhất của biểu thức \(S={{3}^{x+y-4}}+\left( x+y+1 \right){{2}^{7-x-y}}-3\left( {{x}^{2}}+{{y}^{2}} \right)\) là \(\frac{a}{b}\) với \(a,b\) là các số nguyên dương và \(\frac{a}{b}\) tối giản. Tính \(a+b\).

A. T = 8

B. T = 141

C. T = 148

D. T = 151

Đáp án chính xác ✅

Lời giải của giáo viên

verified HocOn247.com

Chú ý với hai căn thức ta có đánh giá sau: \(\sqrt{a}+\sqrt{b}\ge \sqrt{a+b}$ và $\sqrt{a}+\sqrt{b}\le \sqrt{2\left( a+b \right)}\).

Vậy theo giả thiết,ta có \(x+y+1=2\left( \sqrt{x-2}+\sqrt{y+3} \right)\ge 2\sqrt{x+y+1}\Rightarrow \left[ \begin{align} & x+y+1=0 \\ & x+y+1\ge 4 \\ \end{align} \right.\)

Và \(x+y+1=2\left( \sqrt{x-2}+\sqrt{y+3} \right)\le 2\sqrt{2\left( x+y+1 \right)}\Rightarrow x+y+1\le 8\).

 Nếu \(x+y+1=0\Leftrightarrow \left\{ \begin{align} & x=2 \\ & y=-3 \\ \end{align} \right.\Rightarrow S=-\frac{9476}{243}\)

 Nếu \(t=x+y\in \left[ 3;7 \right]\),ta có

\({{x}^{2}}\ge 2x\left( x\ge 2 \right);{{\left( y-1 \right)}^{2}}\ge 0\Rightarrow {{y}^{2}}\ge 2y-1\Rightarrow {{x}^{2}}+{{y}^{2}}\ge 2\left( x+y \right)-1\).

Vì vậy \(S\le {{3}^{x+y-4}}+\left( x+y+1 \right){{2}^{7-x-y}}-6\left( x+y \right)+3\)

Xét hàm số \(f\left( t \right)={{3}^{t-4}}+\left( t+1 \right){{2}^{7-t}}-6t+3\) trên đoạn \(\left[ 3;7 \right]\) ta có:

\(f'\left( t \right)={{3}^{t-4}}\ln 3+{{2}^{7-t}}-\left( t+1 \right){{2}^{7-t}}\ln 2-6\).

\(f''\left( t \right)={{3}^{t-4}}{{\ln }^{2}}3+{{2}^{7-t}}\ln 2-\left( {{2}^{7-t}}-\left( t+1 \right){{2}^{7-t}}\ln 2 \right)\ln 2\)

\(={{3}^{t-4}}{{\ln }^{2}}3+\left[ \left( t+1 \right)\ln 2-2 \right]{{2}^{7-t}}\ln 2>0,\forall t\in \left[ 3;7 \right]\).

Mặt khác \(f'\left( 3 \right)f'\left( 7 \right)<0\Rightarrow f'\left( t \right)=0\) có nghiệm duy nhất \({{t}_{0}}\in \left( 3;7 \right)\).

Vậy ta lập được bảng biến thiên của hàm số \(f\left( t \right)\) như dưới đây:

Suy ra \(\max S=\underset{\left[ 3;7 \right]}{\mathop{\max }}\,f\left( t \right)=f\left( 3 \right)=\frac{148}{3}\).Dấu bằng đạt tại \(x=2;y=1\).

Do đó \(T=148+3=151\).

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x-2y+2z-1=0\). Khoảng cách từ điểm \(A\left( 1;-2;1 \right)\) đến mặt phẳng \(\left( P \right)\) bằng

Xem lời giải » 2 năm trước 41
Câu 2: Trắc nghiệm

Tìm các giá trị của tham số m để hàm số \(y=\frac{1}{2}\ln \left( {{x}^{2}}+4 \right)-mx+3\) nghịch biến trên khoảng \(\left( -\infty ;+\infty  \right)\).

Xem lời giải » 2 năm trước 40
Câu 3: Trắc nghiệm

Cho hình thang ABCD vuông tại A và D, AD=CD=a, AB=2a. Quay hình thang ABCD quanh cạnh AB, thể tích khối tròn xoay thu được là :

Xem lời giải » 2 năm trước 39
Câu 4: Trắc nghiệm

Cho số phức z có \(\left| z \right|=2\) thì số phức \(\text{w}=z+3i\) có modun nhỏ nhất và lớn nhất lần lượt là:

Xem lời giải » 2 năm trước 39
Câu 5: Trắc nghiệm

Cho hai số phức z1 = 1+i và z2 = 2-3i. Tính mô đun của số phức z1 + z2

Xem lời giải » 2 năm trước 38
Câu 6: Trắc nghiệm

Họ nguyên hàm của hàm số \(f(x)=\frac{x+3}{{{x}^{2}}+3\text{x}+2}\) là:

Xem lời giải » 2 năm trước 38
Câu 7: Trắc nghiệm

Cho hàm số \(f\left( x \right)={{x}^{3}}+a{{x}^{2}}+bx+c\) thỏa mãn c>2019, a+b+c-2018<0. Số điểm cực trị của hàm số \(y=\left| f(x)-2019 \right|\) là

Xem lời giải » 2 năm trước 38
Câu 8: Trắc nghiệm

Trong không gian \(Oxyz\), cho đường thẳng \(d:\frac{x+1}{1}=\frac{z-1}{-1}=\frac{y-3}{2}\). Một vectơ chỉ phương của \(d\) là

Xem lời giải » 2 năm trước 38
Câu 9: Trắc nghiệm

Cho hàm số bậc bốn \(y=f\left( x \right)\) có đồ thị như hình dưới đây. Số nghiệm của phương trình \(3f\left( x \right)+1=0\) là

Xem lời giải » 2 năm trước 37
Câu 10: Trắc nghiệm

Cho không gian Oxyz, cho điểm \(A\left( 0;1;2 \right)\) và hai đường thẳng \({{d}_{1}}:\left\{ \begin{align} & x=1+t \\ & y=-1-2t \\ & z=2+t \\ \end{align} \right.\), \({{d}_{2}}:\frac{x}{2}=\frac{y-1}{1}=\frac{z+1}{-1}\). Viết phương trình mặt phẳng \(\left( \alpha  \right)\) đi qua A và song song với hai đường thẳng \({{d}_{1}},{{d}_{2}}\).

Xem lời giải » 2 năm trước 37
Câu 11: Trắc nghiệm

Trong không gian Oxyz, cho điểm \(M\left( 1;1;1 \right)\). Mặt phẳng \(\left( P \right)\) đi qua M và cắt chiều dương của các trục Ox,Oy,Oz lần lượt tại các điểm \(A\left( a;0;0 \right),B\left( 0;b;0 \right),C\left( 0;0;c \right)\) thỏa mãn OA=2OB và thể tích khối tứ diện OABC đạt giá trị nhỏ nhất. Tính S=2a+b+3c.

Xem lời giải » 2 năm trước 37
Câu 12: Trắc nghiệm

Cho hàm số \(y=f\left( x \right)\) và \(y=g\left( x \right)\) liên tục trên đoạn \(\left[ 1;5 \right]\) sao cho \(\int\limits_{1}^{5}{f\left( x \right)\text{d}x}=2\) và \(\int\limits_{1}^{5}{g\left( x \right)\text{d}x}=-4\). Giá trị của \(\int\limits_{1}^{5}{\left[ g\left( x \right)-f\left( x \right) \right]\text{d}x}\) là

Xem lời giải » 2 năm trước 37
Câu 13: Trắc nghiệm

Cho hàm số \(y=f(x)\) có bảng biến thiên như hình bên.

Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Xem lời giải » 2 năm trước 37
Câu 14: Trắc nghiệm

Trong hình dưới đây, điểm \(B\) là trung điểm của đoạn thẳng AC. Khẳng định nào sau đây là đúng?

Xem lời giải » 2 năm trước 36
Câu 15: Trắc nghiệm

Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y = x\left( {2017 + \sqrt {2019 – {x^2}} } \right)\) trên tập xác định của nó. Tính M – m.

Xem lời giải » 2 năm trước 36

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »