Câu hỏi Đáp án 2 năm trước 36

Cho hai vị trí A, B cách nhau \(615m\) , cùng nằm về một phía bờ song như hình vẽ. Khoảng cách từ A và từ B đến bờ song lần lượt là \(118m\) và \(487m\). Một người đi từ A đến bờ song lấy nước mang về B. Tính đoạn đường ngắn nhất mà người ấy có thể đi.

A. \(779,8m\)    

Đáp án chính xác ✅

B. \(671,4m\) 

C. \(741,2m\) 

D. \(596,5m\)  

Lời giải của giáo viên

verified HocOn247.com

Gọi \(H,K\) là hình chiếu của \(A,B\) trên bờ sông, lấy \(A'\) đối xứng với \(A\) qua bờ \(HK.\) Nối \(A'B\) cắt bờ \(HK\) tại \(M.\)

Suy ra \(AM = A'M.\) 

Ta có \(AM + MB = A'M + MB \ge A'B\)  nên quãng đường ngắn nhất người đó đi là \(AM + MB = \)\(A'B\).

Kẻ \(AC \bot BK\) tại \(C \Rightarrow AHKC\) là hình chữ nhật có

\(CK = AH = 118m \Rightarrow CB = BK - CK = 487 - 118 = 369m\)

Tam giác \(CAB\) vuông tại \(C \Rightarrow AC = \sqrt {A{B^2} - B{C^2}}  = \sqrt {{{615}^2} - {{369}^2}}  = 492\) \( \Rightarrow HK = AC = 492m\)

Ta có \(HA'//BK \Rightarrow \frac{{HM}}{{MK}} = \frac{{A'M}}{{MB}} = \frac{{A'H}}{{BK}} = \frac{{118}}{{487}}\) 

\(\begin{array}{l} \Rightarrow \frac{{HM}}{{MK}} = \frac{{118}}{{487}} \Rightarrow \frac{{HM}}{{HM + MK}} = \frac{{118}}{{118 + 487}} = \frac{{118}}{{605}} \Leftrightarrow \frac{{HM}}{{HK}} = \frac{{118}}{{605}}\\ \Leftrightarrow \frac{{HM}}{{492}} = \frac{{118}}{{605}} \Rightarrow HM = \frac{{58056}}{{605}}\end{array}\) 

Xét tam giác \(HMA'\) có \(MA' = \sqrt {H{M^2} + H{{A'}^2}}  = \sqrt {{{\left( {\frac{{58056}}{{605}}} \right)}^2} + {{118}^2}}  \approx 152,093\)

Từ đó : \(\frac{{A'M}}{{MB}} = \frac{{118}}{{487}} \Rightarrow \frac{{A'M}}{{A'M + MB}} = \frac{{118}}{{118 + 487}} \Leftrightarrow \frac{{A'M}}{{A'B}} = \frac{{118}}{{605}} \Leftrightarrow A'B = \frac{{A'M.605}}{{118}} \approx 779,8m\)

Chọn A.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Tìm đường tiệm cận ngang của đồ thị hàm số \(y = \frac{{2 - 2x}}{{x + 1}}\).

Xem lời giải » 2 năm trước 44
Câu 2: Trắc nghiệm

Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(A\), \(SA\) vuông góc với mặt phẳng\(\left( {ABC} \right)\)và \(AB = 2,AC = 4,SA = \sqrt 5 \). Mặt cầu đi qua các đỉnh của hình chóp \(S.ABC\) có bán kính là 

Xem lời giải » 2 năm trước 42
Câu 3: Trắc nghiệm

Giả sử hàm số \(y = f\left( x \right)\) có đạo hàm là hàm số \(y = f'\left( x \right)\) có đồ thị được cho như hình vẽ dưới đây và \(f\left( 0 \right) + f\left( 1 \right) - 2f\left( 2 \right) = f\left( 4 \right) - f\left( 3 \right)\). Tìm giá trị nhỏ nhất \(m\) của hàm số \(y = f\left( x \right)\) trên \(\left[ {0;4} \right]\).

Xem lời giải » 2 năm trước 42
Câu 4: Trắc nghiệm

Tìm nghiệm của phương trình \({\log _2}\left( {3x - 2} \right) = 3\).

Xem lời giải » 2 năm trước 41
Câu 5: Trắc nghiệm

Tìm tập xác định \(D\) của hàm số \(y = {\left( {{x^2} - 3x - 4} \right)^{\sqrt {2 - \sqrt 3 } }}\). 

Xem lời giải » 2 năm trước 40
Câu 6: Trắc nghiệm

Tìm tất cả các giá trị của tham số \(m\) để phương trình \({x^3} - 3{x^2} + 2 - m = 0\) có ba nghiệm phân biệt. 

Xem lời giải » 2 năm trước 40
Câu 7: Trắc nghiệm

Có bao nhiêu số nguyên dương \(m\) sao cho đường thẳng \(y = x + m\) cắt đồ thị hàm số \(y = \frac{{2x - 1}}{{x + 1}}\) tại hai điểm phân biệt \(A,B\) và \(AB \le 4\)? 

Xem lời giải » 2 năm trước 40
Câu 8: Trắc nghiệm

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\sqrt 2 .\) Biết \(SA\) vuông góc với đáy và \(SC = a\sqrt 5 .\) Tính thể tích \(V\) của khối chóp đã cho. 

Xem lời giải » 2 năm trước 40
Câu 9: Trắc nghiệm

Cho hàm số \(f\left( x \right) = {x^3} - \left( {2m - 1} \right){x^2} + \left( {2 - m} \right)x + 2.\) Tìm tất cá các giá trị thực của tham số \(m\) để hàm số \(y = f\left( {\left| x \right|} \right)\) có 5 cực trị. 

Xem lời giải » 2 năm trước 39
Câu 10: Trắc nghiệm

Hàm số nào sau đây nghịch biến trên \(\mathbb{R}\)?

Xem lời giải » 2 năm trước 39
Câu 11: Trắc nghiệm

Thiết diện qua trục của hình nón tròn xoay là một tam giác đều cạnh \(2a.\) Tính thể tích \(V\) của khối nón đó. 

Xem lời giải » 2 năm trước 39
Câu 12: Trắc nghiệm

Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a\). Tính thể tích \(V\) của khối chóp \(D'.ABCD\). 

Xem lời giải » 2 năm trước 39
Câu 13: Trắc nghiệm

Gọi \({x_1},{x_2}\) là nghiệm của phương trình \({7^{{x^2} - 5x + 9}} = 343\). Tính \({x_1} + {x_2}\). 

Xem lời giải » 2 năm trước 38
Câu 14: Trắc nghiệm

Tìm tất cả các giá trị của tham số \(m\) để phương trình \(\log _2^2x + {\log _2}x - m = 0\) có nghiệm \(x \in \left( {0;1} \right)\). 

Xem lời giải » 2 năm trước 38
Câu 15: Trắc nghiệm

Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác cân tại \(A,\) biết \(AB = a;SA = SB = a\) và mặt phẳng \(\left( {SBC} \right)\) vuông góc với mặt phẳng \(\left( {ABC} \right)\). Tính \(SC\) biết bán kính mặt cầu ngoại tiếp hình chóp \(S.ABC\) bằng \(a.\)

Xem lời giải » 2 năm trước 38

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »