Cho hàm số \(y=m{{x}^{3}}-{{x}^{2}}-2x+8m\) có đồ thị \(\left( {{C}_{m}} \right)\). Tìm tất cả giá trị tham số m để đồ thị \(\left( {{C}_{m}} \right)\) cắt trục hoành tại ba điểm phân biệt.
A. \(m \in \left[ { - \frac{1}{6};\frac{1}{2}} \right]\)
B. \(m \in \left( { - \frac{1}{6};\frac{1}{2}} \right)\)
C. \(m \in \left( { - \frac{1}{6};\frac{1}{2}} \right)\backslash \left\{ 0 \right\}.\)
D. \(m \in \left( { - \infty ;\frac{1}{2}} \right)\backslash \left\{ 0 \right\}.\)
Lời giải của giáo viên
Ta có phương trình hoành độ giao điểm của \(\left( {{C_m}} \right)\) với trục hoành là
\(m{x^3} - {x^2} - 2x + 8m = 0 \Leftrightarrow \left( {x + 2} \right)\left[ {m{x^2} - \left( {2m + 1} \right) + 4m} \right] = 0 \Leftrightarrow \left[ \begin{array}{l} x + 2 = 0\\ m{x^2} - \left( {2m + 1} \right)x + 4m = 0(1) \end{array} \right.\)
Để \(\left( {{C_m}} \right)\) cắt trục hoành tại ba điểm phân biệt thì (1) có hai nghiệm phân biệt khác -2
\( \Leftrightarrow \left\{ \begin{array}{l} m \ne 0\\ \Delta = - 12{m^2} + 4m + 1 > 0\\ m.4 + \left( {2m + 1} \right)2 + 4m \ne 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} m \ne 0\\ - \frac{1}{6} < m < \frac{1}{2} \end{array} \right.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm giá trị thực của tham số m để hàm số \(f\left( x \right) = \left\{ \begin{array}{l} \frac{{{x^3} - {x^2} + 2x - 2}}{{x - 1}},x \ne 1\\ 3x + m,x = 1 \end{array} \right.\) liên tục tại x = 1.
Với hai số x, t dương thoả xy = 36, bất đẳng thức nào sau đây đúng?
Hàm số \(y={{\left( x+1 \right)}^{\frac{1}{3}}}\) xác định khi \(x+1>0\Leftrightarrow x>-1\)
Mệnh đề sau đây đúng?
Cho hàm số \(y={{x}^{4}}-2\left( 1-{{m}^{2}} \right){{x}^{2}}+m+1\). Tìm tất các giá trị của tham số m để hàm số cực đại, cực tiểu và các điểm cực trị của đồ thị lập thành một tam giác có diện tích lớn nhất
Cho hàm số y = f(x) có đồ thị như hình vẽ. Trên khoảng (-1;3) đồ thị hàm số y = f(x) có mấy điểm cực trị?
Trên đồ thị của hàm số \(y=\frac{2x-5}{3x-1}\) có bao nhiêu điểm có tọa độ là các số nguyên?
Cho hàm số \(f\left( x \right)={{x}^{3}}+a{{x}^{2}}+bx+c\). Nếu phương trình \(f\left( x \right)=0\) có ba nghiệm phân biệt thì phương trình \(2f\left( x \right).f''\left( x \right)={{\left[ f'\left( x \right) \right]}^{2}}\) có nhiều nhất bao nhiêu nghiệm?
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, chiều cao của chóp bằng \(\frac{a\sqrt{3}}{2}\). Góc giữa mặt bên và mặt đáy bằng
Số nghiệm của phương trình \({9^x} + {2.3^{x + 1}} - 7 = 0\) là
Tập xác định D của hàm số \(y = {\left( {x + 1} \right)^{\frac{1}{3}}}\) là
Giải bất phương trình \({{\log }_{2}}\left( 3x-2 \right)>{{\log }_{2}}\left( 6-5x \right)\) được tập nghiệm là (a;b). Hãy tính tổng S=a+b.
Tích của giá trị nhỏ nhất và giá trị lớn nhất của hàm số \(f\left( x \right)=x+\frac{4}{x}\) trên đoạn [1;3] bằng
Đồ thị hàm số \(y = \frac{{2017x - 2018}}{{x + 1}}\) có đường tiệm cận đứng là
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A và có AB = a, \(BC=a\sqrt{3}\), mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABC). Thể tích V của khối chóp S.ABC là