Lời giải của giáo viên
Ta có \(g'\left( x \right) = f'\left( x \right).f'\left( {f\left( x \right)} \right)\).
\(g'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l} f'\left( x \right) = 0\\ f'\left( {f\left( x \right)} \right) = 0 \end{array} \right.\).
\(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = 2 \end{array} \right.\).
\(f'\left( {f\left( x \right)} \right) = 0 \Leftrightarrow \left[ \begin{array}{l} f\left( x \right) = 0\left( * \right)\\ f\left( x \right) = 2\left( {**} \right) \end{array} \right.\)
Dựa vào đồ thị suy ra:
Phương trình (*) có hai nghiệm \(\left[ \begin{array}{l} x = - 1\\ x = 2 \end{array} \right.\).
Phương trình ( **) có ba nghiệm \(\left[ \begin{array}{l} x = m\left( { - 1 < n < 0} \right)\\ x = n\left( {0 < n < 1} \right)\\ x = p\left( {p > 2} \right) \end{array} \right.\)
\(g'\left( x \right) = 0\) có nghiệm \(\left[ \begin{array}{l} x = - 1\\ x = m\\ x = 0\\ x = n\\ x = 2\\ x = p \end{array} \right.\).
Bảng biến thiên
Nhìn bảng biến thiên ta thấy hàm số \(g\left( x \right) = f\left( {f\left( x \right)} \right)\) có 6 cực trị.
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian Oxyz, cho đường thẳng \(\Delta :\frac{x-1}{2}=\frac{y+2}{-1}=\frac{z+3}{-1}\). Vectơ nào dưới đây là một vectơ chỉ phương của \(\Delta \)?
Cho số phức z thỏa mãn \(\left| z \right|=1\). GTLN của biểu thức \(P=\left| {{z}^{3}}-z+2 \right|\) là:
Với các số thực a, b bất kỳ, mệnh đề nào dưới đây đúng?
Cho hàm số \(y=f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và không có cực trị, đồ thị của hàm số \(y=f\left( x \right)\) là đường cong của hình vẽ bên. Xét hàm số \(h\left( x \right)=\frac{1}{2}{{\left[ f\left( x \right) \right]}^{2}}-2x.f\left( x \right)+2{{x}^{2}}\). Mệnh đề nào sau đây đúng?
Trong không gian Oxyz, cho mặt phẳng \((\alpha )\): \(x-2y+2\text{z}-3=0.\) Điểm nào sau đây nằm trên mặt phẳng \((\alpha )\)?
Với \(0<a\ne 1,0<b\ne 1\), giá trị của \({{\log }_{{{a}^{2}}}}\left( {{a}^{10}}{{b}^{2}} \right)+{{\log }_{\sqrt{a}}}\left( \frac{a}{\sqrt{b}} \right)+{{\log }_{\sqrt[3]{b}}}\left( {{b}^{-2}} \right)\) bằng
Cho đường thẳng d: \(\frac{x}{2}=\frac{y-2}{-3}=\frac{z+1}{2}\) và mặt phẳng (P): x-y-z-2=0. Phương trình hình chiếu vuông góc của d trên (P) là
Tiệm cận đứng của đồ thị hàm số \(y = \frac{{2 - x}}{{x + 3}}\) là
Ta có \(C_{n}^{k}\) là số các tổ hợp chập k của một tập hợp gồm n phần tử \(\left( 1\le k\le n \right)\). Chọn mệnh đề đúng.
Tìm giá trị của tham số thực m để giá trị nhỏ nhất của hàm số \(y=\frac{2x+m}{x+1}\) trên đoạn \(\left[ 0;4 \right]\) bằng 3.
Phương trình \({{\log }_{3}}\left( 3x-2 \right)=3\) có nghiệm là
Cho hàm số \(y=f\left( x \right)\). Hàm số \(y={f}'\left( x \right)\) có đồ thị như hình vẽ. Số điểm cực trị của hàm số \(y=f\left( x \right)\) bằng
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như hình vẽ sau
Mệnh đề nào dưới đây đúng?