Cho hàm số \(f\left( x \right)\) liên tục trên \(\left[ {0;\,1} \right]\) và \(f\left( x \right) + f\left( {1 – x} \right) = \frac{{{x^2} + 2x + 3}}{{x + 1}}, \forall x \in \left[ {0;\,1} \right]\). Tính \(\int\limits_0^1 {f\left( x \right){\rm{d}}x} \)
A. \(\frac{3}{4} + \ln 2\)
B. \(\frac{3}{2} + 2\ln 2\)
C. \(\frac{3}{4} + 2\ln 2\)
D. \(3 + \ln 2\)
Lời giải của giáo viên
Theo giả thiết, ta có: \(f\left( x \right) + f\left( {1 – x} \right) = \frac{{{x^2} + 2x + 3}}{{x + 1}}, \forall x \in \left[ {0;\,1} \right]\) và \(f\left( x \right)\) liên tục trên \(\left[ {0;\,1} \right]\) nên \(\int\limits_0^1 {\left[ {f\left( x \right) + f\left( {1 – x} \right)} \right]{\rm{d}}x} = \int\limits_0^1 {\frac{{{x^2} + 2x + 3}}{{x + 1}}{\rm{d}}x} \Leftrightarrow \int\limits_0^1 {f\left( x \right){\rm{d}}x} + \int\limits_0^1 {f\left( {1 – x} \right){\rm{d}}x} = \int\limits_0^1 {\frac{{{{\left( {x + 1} \right)}^2} + 2}}{{x + 1}}{\rm{d}}x} \) (1)
Đặt 1 – x = t thì \({\rm{d}}x = – {\rm{d}}t\), với \(x = 0 \Rightarrow t = 1\), với \(x = 1 \Rightarrow t = 0\)
Do đó: \(\int\limits_0^1 {f\left( {1 – x} \right){\rm{d}}x} = – \int\limits_1^0 {f\left( t \right){\rm{d}}t} = \int\limits_0^1 {f\left( t \right){\rm{d}}t} = \int\limits_0^1 {f\left( x \right){\rm{d}}x} \Rightarrow \int\limits_0^1 {f\left( x \right){\rm{d}}x} + \int\limits_0^1 {f\left( {1 – x} \right){\rm{d}}x} = 2\int\limits_0^1 {f\left( x \right){\rm{d}}x} \) (2).
Lại có \(\int\limits_0^1 {\frac{{{{\left( {x + 1} \right)}^2} + 2}}{{x + 1}}{\rm{d}}x} = \int\limits_0^1 {\left( {x + 1 + \frac{2}{{x + 1}}} \right){\rm{d}}x} = \left. {\left( {\frac{{{x^2}}}{2} + x + 2\ln \left| {x + 1} \right|} \right)} \right|_0^1 = \frac{3}{2} + 2\ln 2\) (3)
Từ (1), (2) và (3) suy ra \(2\int\limits_0^1 {f\left( x \right){\rm{d}}x} = \frac{3}{2} + 2\ln 2 \Leftrightarrow \int\limits_0^1 {f\left( x \right){\rm{d}}x} = \frac{3}{4} + \ln 2\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho cấp số cộng \(\left( {{u}_{n}} \right)\) với công sai d=3 và \({{u}_{2}}=9\). Số hạng \({{u}_{1}}\) của cấp số cộng bằng
Có bao nhiêu giá trị nguyên âm của m để hàm số \(y={{x}^{4}}-4{{x}^{3}}+\left( m+25 \right)x-1\) đồng biến trên khoảng \(\left( 1;+\infty \right)\).
Cho hàm số y=f(x) có đồ thị như hình vẽ bên. Số nghiệm của phương trình \(2f\left( x \right)+1=0\) là
Cho hàm số f(x) có bảng xét dấu của \(f^{\prime}(x)\) như sau:
Số điểm cực trị của hàm số đã cho là
Xét các số thực a và b thỏa mãn \({{2}^{a}}{{.4}^{b}}=8.\) Mệnh đề nào dưới đây đúng?
Cho hàm số y = f(x) có bảng biến thiên sau
Số nghiệm của phương trình 2f(x) - 1 = 0 là
Giá trị lớn nhất của hàm số \(f(x)=\frac{x-2}{x+3}\) trên đoạn [-1 ; 2] bằng
Số giao điểm của đồ thị hàm số \(\left( c \right):y={{x}^{4}}-5{{x}^{2}}+4\) và trục hoành là
Cho khối chóp có diện tich đáy B=3 và thể tích V = 4. Chiều cao của khối chóp đã cho bằng
Có bao nhiêu cặp số nguyên dương \(\left( {x;y} \right)\) với \(x \le 2020\) thỏa mãn điều kiện \({\log _2}\frac{{x + 2}}{{y + 1}} + {x^2} + 4x = 4{y^2} + 8y + 1\).
Gọi \({{z}_{0}}\) là nghiệm có phần ảo dương của phương trình \({{z}^{2}}+2z+5=0.\) Điểm biểu diễn của số phức \({{z}_{0}}+3i\) là
Cho khối nón có chiều cao h = 3, bán kính r = 4. Độ dài đường sinh của khối nón bằng
Cho tích phân \(I=\int\limits_{1}^{e}{\frac{\ln x}{x\sqrt{3{{\ln }^{2}}x+1}}dx}\). Nếu đặt \(t=\sqrt{3{{\ln }^{2}}x+1}\) thì khẳng định nào sau đây là khẳng định đúng?
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): \({{(x-2)}^{2}}+{{(y+1)}^{2}}+{{(z-7)}^{2}}=36\) có tâm I và bán kính R là: