Cho hàm số \(f\left( x \right)\) liên tục trên tập số thực và có \(f\left( -1 \right)=0\). Hàm số \({f}'\left( x \right)\) có đồ thị như hình vẽ:
Hàm số \(g(x)=\left| 2f\left( x-1 \right)-{{x}^{2}} \right|\) đồng biến trên khoảng nào?
A. \(\left( {3; + \infty } \right)\)
B. \(\left( { - 1;2} \right)\)
C. \(\left( {0; + \infty } \right)\)
D. (0;3)
Lời giải của giáo viên
+ Ta xét hàm số \(h(x)=2f\left( x-1 \right)-{{x}^{2}}\), có \({h}'(x)=2{f}'\left( x-1 \right)-2x=2\left[ {f}'\left( x-1 \right)-\left( x-1+1 \right) \right]\)
+ Đặt u=x-1 thì có \({h}'(x)=2\left[ {f}'\left( u \right)-\left( u+1 \right) \right]\)
+ Quan sát đồ thị hàm số \(y={f}'\left( u \right)\) và y=u+1
Ta suy ra bảng xét dấu
+ Giải các phương trình \(\left[ \begin{array}{l} x - 1 = - 1\\ x - 1 = 0\\ x - 1 = 2 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = 1\\ x = 3 \end{array} \right.\)
Ta có bảng biến thiên
Từ bảng biến thiên dễ thấy hàm số \(h(x)=2f\left( x-1 \right)-{{x}^{2}}\) và \(g(x)=\left| 2f\left( x-1 \right)-{{x}^{2}} \right|\) cùng đồng biến trên \(\left( 0;3 \right)\)
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm tập nghiệm S của phương trình \({{2}^{x+1}}=8\).
Cho \(\int\limits_{1}^{2}{f\left( x \right)\text{d}x=-3}, \int\limits_{2}^{5}{f\left( x \right)\text{d}x=5}\) và \(\int\limits_{1}^{5}{g\left( x \right)\text{d}x=6}\). Tính tích phân \(I=\int\limits_{1}^{5}{\left[ 2.f\left( x \right)-g\left( x \right) \right]\text{d}x}\).
Tính thể tích V của khối lập phương \(ABCD.{A}'{B}'{C}'{D}'\), biết BB'=2m.
Cho số phức \(w=2-3i\). Điểm biểu diễn số phức liên hợp của w có tọa độ là
Trong không gian với hệ tọa độ Oxyz, cho điểm \(A\left( 1;2;-3 \right),B\left( \frac{3}{2};\frac{3}{2};-\frac{1}{2} \right),C\left( 1;1;4 \right),D\left( 5;3;0 \right).\) Gọi \(\left( {{S}_{1}} \right)\) là mặt cầu tâm A bán kính bằng \(3,\left( {{S}_{2}} \right)\) là mặt cầu tâm B bán kính bằng \(\frac{3}{2}.\) Có bao nhiêu mặt phẳng tiếp xúc với 2 mặt cầu \(\left( {{S}_{1}} \right),\left( {{S}_{2}} \right)\) đồng thời song song với đường thẳng đi qua C và D.
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(\Delta :\left\{ \begin{align} & x=1+t \\ & y=1+t \\ & z=1+2t \\ \end{align} \right.\). Điểm nào sau đây thuộc \(\Delta \)
Cho cấp số cộng \(\left( {{u}_{n}} \right)\) có: \({{u}_{1}}=-0,1;\,\,d=0,1\). Số hạng thứ 7 của cấp số cộng này là
Trong không gian Oxyz, đường thẳng đi qua gốc tọa độ O và điểm \(B\left( 1;2;3 \right)\) có phương trình tham số là:
Cho hình lăng trụ đều \(ABC.{A}'{B}'{C}'\) có cạnh đáy bằng a, cạnh bên bằng \(a\sqrt{3}\). Góc giữa đường thẳng \({B}'C\) với mặt phẳng đáy bằng
Chọn ngẫu nhiên 2 số trong 10 số nguyên dương đầu tiên. Xác suất để chọn được hai số có tích là một số chẵn là:
Cho biểu thức \(P=\sqrt[4]{{{x}^{5}}}\), với x>0. Mệnh đề nào dưới đây là mệnh đề đúng?
Có bao nhiêu giá trị nguyên của tham số \(m\in \left( -2020;2020 \right)\) để \(2{{\text{a}}^{\sqrt{{{\log }_{a}}b}}}\text{ - }{{\text{b}}^{\sqrt{{{\log }_{b}}a}}}>m\sqrt{{{\log }_{a}}b}+1\) với a,b là các số thực lớn hơn 1?
Trong không gian với hệ tọa độ Oxyz, tâm và bán kính của mặt cầu \(\left( S \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}+4x-2y+6z+5=0\) là
Có bao nhiêu số nguyên dương x sao cho ứng với mỗi x có không quá 10 số nguyên y thỏa mãn \(\left( {{3}^{y+3}}-3 \right)\left( {{3}^{y}}-x \right)>0\,\,?\)
Cho hàm số bậc 3 \(f\left( x \right)=a{{x}^{3}}+b{{x}^{2}}+cx+d\) và đường thẳng d: \(g\left( x \right)=mx+n\) có đồ thị như hình vẽ. Nếu phần tô màu đen có diện tích bằng \(\frac{1}{2}\), thì phần gạch chéo có diện tích bằng bao nhiêu?