Cho hàm số \(f\left( x \right) = - {x^2} + 3\) và hàm số \(g\left( x \right) = {x^2} - 2x - 1\) có đồ thị như hình vẽ:
Tích phân \(I = \int\limits_{ - 1}^2 {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \) bằng với tích phân nào sau đây ?
A. \(I = \int\limits_{ - 1}^2 {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} \)
B. \(I = \int\limits_{ - 1}^2 {\left[ {g\left( x \right) - f\left( x \right)} \right]dx} \)
C. \(I = \int\limits_{ - 1}^2 {\left[ {f\left( x \right) - g\left( x \right)} \right]dx} \)
D. \(I = \int\limits_{ - 1}^2 {\left[ {\left| {f\left( x \right)} \right| - \left| {g\left( x \right)} \right|} \right]dx} \)
Lời giải của giáo viên
Ta có: \(f\left( x \right) \ge g\left( x \right)\,\,\forall x \in \left[ { - 1;2} \right] \Rightarrow f\left( x \right) - g\left( x \right) \ge 0\,\,\forall x \in \left[ { - 1;2} \right]\)
\( \Rightarrow \left| {f\left( x \right) - g\left( x \right)} \right| = f\left( x \right) - g\left( x \right)\,\,\forall x \in \left[ { - 1;2} \right] \Rightarrow I = \int\limits_{ - 1}^2 {\left| {f\left( x \right) - g\left( x \right)} \right|dx} = \int\limits_{ - 1}^2 {\left[ {f\left( x \right) - g\left( x \right)} \right]dx} \).
Chọn C.
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm tất cả các giá trị thực của tham số \(m\) để phương trình \({9^x} + {6^x} - m{.4^x} = 0\) có nghiệm là:
Cho hàm số có đồ thị như hình vẽ. Giá trị cực đại của hàm số bằng:
Cho hình chóp \(S.\,ABC\) có \(SA\) vuông góc với đáy. Tam giác \(ABC\) vuông cân tại \(B\), biết \(SA = AC = 2a\). Thể tích khối chóp \(S.ABC\) là
Cho khối nón có độ dài đường sinh bằng \(2a\), góc giữa đường sinh và đáy bằng \({60^0}\). Thể tích của khối nón đã cho là:
Trong không gian \(Oxyz\) cho \(A\left( {0;1;2} \right),\,\,B\left( {0;1;0} \right),\,\,C\left( {3;1;1} \right)\) và mặt phẳng \(\left( Q \right):\,\,x + y + z - 5 = 0\). Xét điểm \(M\) thay đổi thuộc \(\left( Q \right)\). Giá trị nhỏ nhất của biểu thức \(M{A^2} + M{B^2} + M{C^2}\) bằng:
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ. Số nghiệm của phương trình \(2f\left( x \right) - 3 = 0\) là:
Họ nguyên hàm của hàm số \(f\left( x \right) = \sin x + x\ln x\) là:
Đặt \({\log _5}3 = a\), khi đó \({\log _{81}}75\) bằng:
Tính thể tích của khối tứ diện đều có tất cả các cạnh bằng \(a\).
Tìm hệ số của đơn thức \({a^3}{b^2}\) trong khai triển của nhị thức \({\left( {a + 2b} \right)^5}\).
Trong không gian Oxyz, đường thẳng \(d:\,\,\dfrac{{x - 1}}{2} = \dfrac{y}{1} = \dfrac{z}{3}\) đi qua điểm nào dưới đây:
Cho \(\int\limits_0^1 {\dfrac{{xdx}}{{{{\left( {2x + 1} \right)}^2}}}} = a + b\ln 2 + c\ln 3\) với \(a,\,\,b,\,\,c\) là các số hữu tỉ. Giá trị của \(a + b + c\) bằng:
Trong không gian \(Oxyz\), cho mặt phẳng \(\left( P \right):\,\,x + 2y + 2z - 10 = 0\). Phương trình mặt phẳng \(\left( Q \right)\) với \(\left( Q \right)\) song song với \(\left( P \right)\) và khoảng cách giữa hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) bằng \(\dfrac{7}{3}\) là:
Trong không gian \(Oxyz\), mặt phẳng \(\left( {Oxy} \right)\) có phương trình là: