Cho hàm số \(y=f\left( x \right)\) có đạo hàm đến cấp 2 trên \(\mathbb{R}\). Biết hàm số \(y=f\left( x \right)\) đạt cực tiểu tại x=-1, có đồ thị như hình vẽ và đường thẳng \(\Delta \) là tiếp tuyến của đồ thị hàm số tại điểm x=2. Tính \(\int\limits_{1}^{4}{{f}''\left( x-2 \right)\text{d}x}\)
A. 4
B. 3
C. 2
D. 1
Lời giải của giáo viên
Dễ thấy đường thẳng \(\Delta \) đi qua các điểm \(\left( 0;-3 \right)\) và \(\left( 1;0 \right)\) nên \(\Delta :y=3x-3\) suy ra hệ số góc của \(\Delta \) là \(k=3\Rightarrow {f}'\left( 2 \right)=3\).
Hàm số \(y=f\left( x \right)\) đạt cực tiểu tại x=-1 suy ra \({f}'\left( -1 \right)=0\).
Vậy \(\int\limits_{1}^{4}{{f}''\left( x-2 \right)\text{d}x}=\left. {f}'\left( x-2 \right) \right|_{1}^{4}={f}'\left( 2 \right)-{f}'\left( -1 \right)=3-0=3\).
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian Oxyz, cho đường thẳng \(\Delta :\frac{x-1}{2}=\frac{y+2}{-1}=\frac{z+3}{-1}\). Vectơ nào dưới đây là một vectơ chỉ phương của \(\Delta \)?
Cho số phức z thỏa mãn \(\left| z \right|=1\). GTLN của biểu thức \(P=\left| {{z}^{3}}-z+2 \right|\) là:
Với các số thực a, b bất kỳ, mệnh đề nào dưới đây đúng?
Cho hàm số \(y=f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và không có cực trị, đồ thị của hàm số \(y=f\left( x \right)\) là đường cong của hình vẽ bên. Xét hàm số \(h\left( x \right)=\frac{1}{2}{{\left[ f\left( x \right) \right]}^{2}}-2x.f\left( x \right)+2{{x}^{2}}\). Mệnh đề nào sau đây đúng?
Trong không gian Oxyz, cho mặt phẳng \((\alpha )\): \(x-2y+2\text{z}-3=0.\) Điểm nào sau đây nằm trên mặt phẳng \((\alpha )\)?
Cho đường thẳng d: \(\frac{x}{2}=\frac{y-2}{-3}=\frac{z+1}{2}\) và mặt phẳng (P): x-y-z-2=0. Phương trình hình chiếu vuông góc của d trên (P) là
Với \(0<a\ne 1,0<b\ne 1\), giá trị của \({{\log }_{{{a}^{2}}}}\left( {{a}^{10}}{{b}^{2}} \right)+{{\log }_{\sqrt{a}}}\left( \frac{a}{\sqrt{b}} \right)+{{\log }_{\sqrt[3]{b}}}\left( {{b}^{-2}} \right)\) bằng
Ta có \(C_{n}^{k}\) là số các tổ hợp chập k của một tập hợp gồm n phần tử \(\left( 1\le k\le n \right)\). Chọn mệnh đề đúng.
Tiệm cận đứng của đồ thị hàm số \(y = \frac{{2 - x}}{{x + 3}}\) là
Tìm giá trị của tham số thực m để giá trị nhỏ nhất của hàm số \(y=\frac{2x+m}{x+1}\) trên đoạn \(\left[ 0;4 \right]\) bằng 3.
Phương trình \({{\log }_{3}}\left( 3x-2 \right)=3\) có nghiệm là
Cho hàm số \(y=f\left( x \right)\). Hàm số \(y={f}'\left( x \right)\) có đồ thị như hình vẽ. Số điểm cực trị của hàm số \(y=f\left( x \right)\) bằng
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như hình vẽ sau
Mệnh đề nào dưới đây đúng?