Cho hàm số \(y=f\left( x \right)\) có đạo hàm \(f\prime \left( x \right)={{\left( x+1 \right)}^{4}}{{\left( x-m \right)}^{5}}{{\left( x+3 \right)}^{3}}\) với mọi \(x\in \mathbb{R}\). Có bao nhiêu giá trị nguyên của tham số \({m \in [ - 5 ; 5 ]}\) để hàm số \(g\left( x \right)=f\left( \left| x \right| \right)\) có 3 điểm cực trị?
A. 5
B. 4
C. 3
D. 6
Lời giải của giáo viên
Do hàm số \(y=f\left( x \right)\) có đạo hàm với mọi \(x\in \mathbb{R}\) nên \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\), do đó hàm số \(g\left( x \right)=f\left( \left| x \right| \right)\) liên tục trên \(\mathbb{R}\). Suy ra \(g\left( 0 \right)=f\left( 0 \right)\) là một số hữu hạn.
Xét trên khoảng \(\left( 0;+\infty\right): g\left( x \right)=f\left( x \right)\)
\(g\prime \left( x \right)=f\prime \left( x \right)={{\left( x+1 \right)}^{4}}{{\left( x-m \right)}^{5}}{{\left( x+3 \right)}^{3}}\)
\(g\prime \left( x \right)=0 \Leftrightarrow {{\left( x-m \right)}^{5}}=0 \Leftrightarrow x=m\)
- TH1: m=0 thì x=0. Khi đó x=0 là nghiệm bội lẻ của \(g\prime \left( x \right)\) nên \(g\prime \left( x \right)\) đổi dấu một lần qua x=0 suy ra hàm số \(g\left( x \right)\) có duy nhất một điểm cực trị là x=0.
- TH2: m<0 thì \(g\prime \left( x \right)\) vô nghiệm, suy ra \(g\prime \left( x \right)>0\) với mọi x>0
Hàm số \(y=g\left( x \right)\) đồng biến trên khoảng \( \left( 0;+\infty\right)\).
Cả hai trường hợp trên đều có: hàm số \(g\left( x \right)=f\left( \left| x \right| \right)\) có duy nhất một điểm cực trị là x=0.
- TH 3: m>0 thì x=m là nghiệm bội lẻ của \(g\prime \left( x \right)\)
Bảng biến thiên của hàm số \(g\left( x \right)=f\left( \left| x \right| \right)\):
- Lại có \({m \in [ - 5 ; 5 ]}\) và m nguyên nên \(m\in \left\{ 1,2,3,4,5 \right\}\).
Vậy có 5 giá trị nguyên của m.
CÂU HỎI CÙNG CHỦ ĐỀ
Diện tích xung quanh của hình trụ có bán kính đáy R=4cm và đường sinh l=5cm bằng:
Cho hàm số \(f\left( x \right)=\ln \left( {{x}^{4}}+2x \right)\). Đạo hàm \({f}'\left( 1 \right)\) bằng
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có một nguyên hàm là \(F\left( x \right)\). Biết \(F\left( 1 \right)=8\), giá trị \(F\left( 9 \right)\) được tính bằng công thức
Tìm tập hợp tất cả các giá trị tham số m để phương trình \({{4}^{{{x}^{2}}-2x+1}}-m{{.2}^{{{x}^{2}}-2x+2}}+3m-2=0\) có 4 nghiệm phân biệt.
Cho hàm số \(y=\frac{3x}{5x-2}\). Khẳng định nào sau đây đúng?
Cho số phức \(z=5-2i\). Tìm số phức \(w=iz+\overline{z}\).
Điểm \(A\) trong hình bên dưới là điểm biểu diễn số phức \(z\).
Mệnh đề nào dưới đây đúng?
Cho hàm số \(f\left( x \right)={{x}^{4}}\). Hàm số \(g\left( x \right)=f'\left( x \right)-3{{x}^{2}}-6x+1\) đạt cực tiểu, cực đại lần lượt tại \({{x}_{1}},\text{ }{{\text{x}}_{2}}\). Tính \(m=g\left( x{{ }_{1}} \right)g\left( {{x}_{2}} \right)\).
Trong không gian Oxyz, mặt cầu \(\left( S \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-8x+2y+1=0\) có tọa độ tâm I và bán kính R lần lượt là
Cho hàm số \(f\left( x \right)\) xác định và có đạo hàm \({f}'\left( x \right)\) liên tục trên \(\left[ 1\,;\,3 \right],f\left( x \right)\ne 0\) với mọi \(x\in \left[ 1\,;3 \right]\), đồng thời \({f}'\left( x \right){{\left[ 1+f\left( x \right) \right]}^{2}}={{\left[ {{\left( f\left( x \right) \right)}^{2}}\left( x-1 \right) \right]}^{2}}\) và \(f\left( 1 \right)=-1\). Biết rằng \(\int\limits_{1}^{3}{f\left( x \right)\text{d}x}=a\ln 3+b\,\,\,\left( a\in \mathbb{Z},\,\,b\in \mathbb{Z} \right)\), tính tổng \(S=a+{{b}^{2}}\).
Gọi \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)={{\text{e}}^{-x}}+\cos x\). Tìm khẳng định đúng.
Cho hàm số \(y=\frac{x-1}{x+2}\). Mệnh đề nào sau đây là mệnh đề đúng?
Cho hàm số có \({f}'\left( x \right)\) và \({f}''\left( x \right)\) liên tục trên \(\mathbb{R}\). Biết \({f}'\left( 2 \right)=4\) và \({f}'\left( -1 \right)=-2,\) tính \(\int\limits_{-1}^{2}{{f}''\left( x \right)\text{d}x}\)
Cho hình chóp tứ giác đều có cạnh đáy bằng 2a, cạnh bên bằng 3a. Gọi \(\alpha \) là góc giữa mặt bên và mặt đáy, mệnh đề nào dưới đây đúng?
Cho số phức z thỏa mãn \(\left| z+1 \right|=\sqrt{3}\). Tìm giá trị lớn nhất của \(T=\left| z+4-i \right|+\left| z-2+i \right|\).