Câu hỏi Đáp án 2 năm trước 39

Cho hàm số \(y = \frac{1}{4}{x^4} - 3{x^2}\) có đồ thị (C). Có bao nhiêu điểm A thuộc (C) sao cho tiếp tuyến của (C) tại A cắt (C) tại hai điểm phân biệt \(M\left( {{x_1};{y_1}} \right),N\left( {{x_2};{y_2}} \right)\) (M, N khác A) thỏa mãn \({y_1} - {y_2} = 5\left( {{x_1} - {x_2}} \right).\)

A. 1

B. 2

Đáp án chính xác ✅

C. 0

D. 3

Lời giải của giáo viên

verified HocOn247.com

\(y’=x^3-6x\)

Gọi \(A\left( {{x_0};\frac{1}{4}{x_0}^4 - 3{x_0}^2} \right)\) là tọa độ tiếp điểm của tiếp tuyến tại A. Phương trình tiếp tuyến tại A là đường thẳng (d) có phương trình: \(y = \left( {x_0^3 - 6{x_0}} \right)\left( {x - {x_0}} \right) + \frac{1}{4}x_0^4 - 3x_0^2\) 

Phương trình hoành độ giao điểm của (d) và (C) là:

\(\begin{array}{l}
\left( {x_0^3 - 6{x_0}} \right)\left( {x - {x_0}} \right) + \frac{1}{4}x_0^4 - 3x_0^2 = \frac{1}{4}{x^4} - 3{x^2}\\
 \Leftrightarrow {\left( {x - {x_0}} \right)^2}\left( {{x^2} + 2{x_0}x + 3x_0^2 - 12} \right) = 0\\
 \Leftrightarrow \left[ \begin{array}{l}
x - {x_0} = 0\\
{x^2} + 2{x_0}x + 3{x_0} - 12 = 0\left( 2 \right)
\end{array} \right.
\end{array}\) 

(d) cắt (C) tại 2 điểm phân biệt khác A khi và chỉ khi phương trình (2) có 2 nghiệm phân biệt khác \(x_0\)

\(\left[ \begin{array}{l}
{x_0} \ne  \pm \sqrt 2 \\
 - \sqrt 6  < {x_0} < \sqrt 6 
\end{array} \right.\left( 3 \right)\) 

Khi đó, phương trình (2) có 2 nghiệm phân biệt \(x_1, x_2\) và (d) cắt (C) tại 2 điểm phân biệt trong đó:

\(\begin{array}{l}
{y_1} = \left( {x_0^3 - 6{x_0}} \right)\left( {{x_1} - {x_0}} \right) + \frac{1}{4}x_0^4 - 3x_0^3;{y_2} = \left( {x_0^3 - 6{x_0}} \right)\left( {{x_2} - {x_0}} \right) + \frac{1}{4}x_0^4 - 3x_0^3\\
 \Rightarrow {y_1} - {y_2} = \left( {x_0^3 - 6{x_0}} \right)\left( {{x_1} - {x_2}} \right)
\end{array}\) 

Từ giả thiết ta suy ra:

\(\begin{array}{l}
\left( {x_0^3 - 6{x_0}} \right)\left( {{x_1} - {x_2}} \right) = 5\left( {{x_1} - {x_2}} \right) \Leftrightarrow x_0^3 - 6{x_0} = 5\left( {{x_1} \ne {x_2}} \right)\\
 \Leftrightarrow \left[ \begin{array}{l}
{x_0} =  - 1\\
{x_0} = \frac{{ - 1 - \sqrt {21} }}{2}\\
{x_0} = \frac{{ - 1 + \sqrt {21} }}{2}
\end{array} \right.
\end{array}\) 

Kết hợp với điều kiện (3) có 2 giá trị \(x_0\) thỏa mãn yêu cầu bài toán là: \(\left[ \begin{array}{l}
{x_0} =  - 1\\
{x_0} = \frac{{ - 1 + \sqrt {21} }}{2}
\end{array} \right.\) 

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho dãy số \(({u_n}):\left\{ \begin{array}{l}
{u_1} = 5\\
{u_{n + 1}} = {u_n} + n
\end{array} \right.\) . Số 20 là số hạng thứ mấy trong dãy?

Xem lời giải » 2 năm trước 48
Câu 2: Trắc nghiệm

Trong mặt phẳng tọa độ Oxy cho bốn điểm \(A\left( {3; - 5} \right),B\left( { - 3;3} \right),C\left( { - 1; - 2} \right),D\left( {5; - 10} \right).\) Hỏi \(G\left( {\frac{1}{3}; - 3} \right)\) là trọng tâm của tam giác nào dưới đây?

Xem lời giải » 2 năm trước 47
Câu 3: Trắc nghiệm

Cho tứ diện ABCD có \(AB = AC,DB = DC.\)  Khẳng định nào sau đây là đúng?

Xem lời giải » 2 năm trước 44
Câu 4: Trắc nghiệm

Hàm số nào sau đây có đồ thị như hình bên?

 

Xem lời giải » 2 năm trước 43
Câu 5: Trắc nghiệm

Cho \({\log _{12}}3 = a\). Tính \({\log _{24}}18\) theo \(a\).

Xem lời giải » 2 năm trước 43
Câu 6: Trắc nghiệm

Có bao nhiêu số tự nhiên có 3 chữ số \(\overline {abc} \) sao cho a, b, c là độ dài 3 cạnh của một tam giác cân.

Xem lời giải » 2 năm trước 41
Câu 7: Trắc nghiệm

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân,\(BA{\rm{ }} = {\rm{ }}BC{\rm{ }} = a,\widehat {SAB} = \widehat {SCB} = 90^\circ ,\) biết khoảng cách từ A đến mặt phẳng (SBC) bằng \(\frac{{a\sqrt 3 }}{2}\) . Góc giữa SC và mặt phẳng (ABC) là:

Xem lời giải » 2 năm trước 40
Câu 8: Trắc nghiệm

Trong các dãy số sau, dãy nào là cấp số cộng:

Xem lời giải » 2 năm trước 40
Câu 9: Trắc nghiệm

Tìm tập xác định của hàm số \(y = \frac{1}{{{{\log }_2}\left( {5 - x} \right)}}\)

Xem lời giải » 2 năm trước 40
Câu 10: Trắc nghiệm

Gọi d là tiếp tuyến tại điểm cực đại của đồ thị hàm số \(y = {x^3} - 3{x^2} + 2\). Mệnh đề nào dưới đây đúng?

Xem lời giải » 2 năm trước 40
Câu 11: Trắc nghiệm

Trong các hàm số sau, hàm số nào là hàm số chẵn.

Xem lời giải » 2 năm trước 40
Câu 12: Trắc nghiệm

Cho phương trình \(\sin \left( {2x - \frac{\pi }{4}} \right) = \sin \left( {x + \frac{{3\pi }}{4}} \right).\) Tính tổng các nghiệm thuộc khoảng \(\left( {0;\pi } \right)\) của phương trình trên.

Xem lời giải » 2 năm trước 39
Câu 13: Trắc nghiệm

Hệ số của số hạng chứa \(x^6\) trong khai triển nhị thức \({\left( {\frac{3}{x} - \frac{x}{3}} \right)^{12}}\) (với \(x \ne 0\)) là:

Xem lời giải » 2 năm trước 39
Câu 14: Trắc nghiệm

Xét các mệnh đề sau, mệnh đề nào là mệnh đề đúng?

Xem lời giải » 2 năm trước 38
Câu 15: Trắc nghiệm

Giải phương trình \(8.\cos 2x.\sin 2x.\cos 4x =  - \sqrt 2 .\)

Xem lời giải » 2 năm trước 38

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »