Cho hàm số \(y = f\left( x \right)\) là hàm số chẵn, liên tục trên đoạn \(\left[ { – \pi ;\pi } \right]\), thỏa mãn \(\int_0^\pi {f\left( x \right){\rm{d}}x} = 2\). Giá trị tích phân \(I = \int_{ – \pi }^\pi {\frac{{f\left( x \right)}}{{{{2020}^x} + 1}}{\rm{d}}x} \) bằng?
A. \(\frac{1}{{2020}}\)
B. \(\frac{1}{{{2^{2020}}}}\)
C. \({2^{2020}}\)
D. 2
Lời giải của giáo viên
Đặt \(t = – x \Rightarrow {\rm{d}}t = – {\rm{d}}x\). Đổi cận \(x = – \pi \Rightarrow t = \pi ,\,\,x = \pi \Rightarrow t = – \pi \).
\( \Rightarrow I = – \int_\pi ^{ – \pi } {\frac{{f\left( { – t} \right)}}{{{{2020}^{ – t}} + 1}}{\rm{d}}t} = \int_{ – \pi }^\pi {\frac{{f\left( t \right)}}{{{{2020}^{ – t}} + 1}}{\rm{d}}t} \) ( vì \(y = f\left( x \right)\) là hàm số chẵn nên \(f\left( t \right) = f\left( { – t} \right)\)).
\(I = \int_{ – \pi }^\pi {\frac{{{{2020}^t}f\left( t \right)}}{{{{2020}^t} + 1}}{\rm{d}}t} = \int_{ – \pi }^\pi {\frac{{\left( {{{2020}^t} + 1 – 1} \right)f\left( t \right)}}{{{{2020}^t} + 1}}{\rm{d}}t} = \int_{ – \pi }^\pi {f\left( t \right){\rm{d}}t} – \int_{ – \pi }^\pi {\frac{{f\left( t \right)}}{{{{2020}^t} + 1}}{\rm{d}}t} \)
\(2I = \int_{ – \pi }^\pi {f\left( t \right){\rm{d}}t} = 2\int_0^\pi {f\left( t \right){\rm{d}}t} \)( vì \(y = f\left( t \right)\) là hàm số chẵn )
Vậy \(I = \int_0^\pi {f\left( t \right){\rm{d}}t} = 2\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số y=f(x) có đồ thị như hình vẽ bên. Số nghiệm của phương trình \(2f\left( x \right)+1=0\) là
Cho cấp số cộng \(\left( {{u}_{n}} \right)\) với công sai d=3 và \({{u}_{2}}=9\). Số hạng \({{u}_{1}}\) của cấp số cộng bằng
Có bao nhiêu giá trị nguyên âm của m để hàm số \(y={{x}^{4}}-4{{x}^{3}}+\left( m+25 \right)x-1\) đồng biến trên khoảng \(\left( 1;+\infty \right)\).
Xét các số thực a và b thỏa mãn \({{2}^{a}}{{.4}^{b}}=8.\) Mệnh đề nào dưới đây đúng?
Cho hàm số f(x) có bảng xét dấu của \(f^{\prime}(x)\) như sau:
Số điểm cực trị của hàm số đã cho là
Cho hàm số y = f(x) có bảng biến thiên sau
Số nghiệm của phương trình 2f(x) - 1 = 0 là
Số giao điểm của đồ thị hàm số \(\left( c \right):y={{x}^{4}}-5{{x}^{2}}+4\) và trục hoành là
Giá trị lớn nhất của hàm số \(f(x)=\frac{x-2}{x+3}\) trên đoạn [-1 ; 2] bằng
Gọi \({{z}_{0}}\) là nghiệm có phần ảo dương của phương trình \({{z}^{2}}+2z+5=0.\) Điểm biểu diễn của số phức \({{z}_{0}}+3i\) là
Cho tích phân \(I=\int\limits_{1}^{e}{\frac{\ln x}{x\sqrt{3{{\ln }^{2}}x+1}}dx}\). Nếu đặt \(t=\sqrt{3{{\ln }^{2}}x+1}\) thì khẳng định nào sau đây là khẳng định đúng?
Có bao nhiêu cặp số nguyên dương \(\left( {x;y} \right)\) với \(x \le 2020\) thỏa mãn điều kiện \({\log _2}\frac{{x + 2}}{{y + 1}} + {x^2} + 4x = 4{y^2} + 8y + 1\).
Tìm tập nghiệm của bất phương trình \({\left( {\frac{1}{2}} \right)^x} \ge 2\)
Cho khối nón có chiều cao h = 3, bán kính r = 4. Độ dài đường sinh của khối nón bằng
Cho khối chóp có diện tich đáy B=3 và thể tích V = 4. Chiều cao của khối chóp đã cho bằng