Lời giải của giáo viên
Đồ thị hàm số có x = 1 là tiệm cận đứng nên c = -1.
Đồ thị hàm số có y = -1 là tiệm cận ngang nên a = -1.
Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng -2 nên \(\frac{b}{c} = - 2\) do đó b = 2.
Vậy \(T = a - 3b + 2c = - 1 - 3.2 + 2\left( { - 1} \right) = - 9\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số f(x) có \(f\left( {\frac{\pi }{2}} \right) = 0\) và \(f'(x) = sinx.si{n^2}2x,\forall x \in R\). Khi đó \(\int\limits_0^{\frac{\pi }{2}} {f(x)dx} \) bằng
Cho hàm số y = f(x) có đạo hàm trên R và có đồ thị là đường cong trong hình vẽ bên.
Đặt g(x) = f[f(x)] Tìm số nghiệm của phương trình g'(x) = 0
Cho hàm số \(y = \frac{{ax + b}}{{x + c}}\) có đồ thị như hình vẽ a, b, c là các số nguyên. Giá trị của biểu thức T = a - 3b + 2c bằng:
Trong không gian Oxyz, hình chiếu vuông góc của điểm M(3;1;-1) trên trục Oy có tọa độ là
Đường cong trong hình vẽ bên là đồ thị của hàm số nào dưới đây?
Cho phương trình \(lo{g_9}{x^2} - {\log _3}\left( {3x - 1} \right) = - {\log _3}m\). Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình đã cho có nghiệm?
Cho hình hộp ABCD.A'B'C'D' thể tích là V. Tính thể tích của tứ diện ACB'D' theo V.
Thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi các đường \(y = {x^{\frac{1}{2}}}.{e^{\frac{x}{2}}}\), x = 1, x = 2, y = 0 quanh trục Ox được tính bởi biểu thức nào sau đây?
Hình dưới đây là đồ thị của hàm số \(f\left( x \right) = a{x^3} + bx + c\).
Khẳng định nào dưới đây là đúng?
Cho hàm số bậc ba \(f\left( x \right) = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình sau:
Đồ thị hàm số \(g\left( x \right) = \frac{{\left( {{x^2} - 3x + 2} \right)\sqrt {x - 1} }}{{x\left[ {{f^2}\left( x \right) - f\left( x \right)} \right]}}\) có bao nhiêu đường tiệm cận đứng?
Cho hình nón có đường sinh bằng 3, diện tích xung quanh bằng \(12\pi\). Bán kính đáy của hình nón là:
Cho hàm số y = f(x) có bảng biến thiên như sau. Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là
Biết \({\int\limits_0^1 {f\left( x \right)dx} }=2\) và \({\int\limits_0^1 {g\left( x \right)dx} } = -4\), khi đó \({\int\limits_0^1 [{f\left( x \right)} }+g(x)]dx\) bằng