Câu hỏi Đáp án 2 năm trước 33

Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\), \(SA \bot (ABCD)\) và \(SA = a\sqrt 6 .\) Giá trị \(\cos (\widehat {SC,(SAD)})\) bằng  

A. \(\dfrac{{\sqrt {14} }}{2}.\) 

B. \(\dfrac{{\sqrt {14} }}{4}.\)  

Đáp án chính xác ✅

C. \(\dfrac{{\sqrt 6 }}{6}.\)      

D. \(\dfrac{{\sqrt 6 }}{3}.\)  

Lời giải của giáo viên

verified HocOn247.com

Ta có: \(CD \bot AD,CD \bot SA \Rightarrow CD \bot \left( {SDA} \right)\).

Do đó góc giữa đường thẳng \(SC\) và mặt phẳng \(\left( {SAD} \right)\) bằng góc giữa đường thẳng \(CS\) và đường thẳng \(DS\) hay \(\widehat {CSD}\).

Lại có \(SD = \sqrt {S{A^2} + A{D^2}}  = a\sqrt 7 ,SC = \sqrt {S{A^2} + A{C^2}}  = 2a\sqrt 2 ,CD = a\) nên áp dụng định lý hàm số cô sin cho tam giác \(SCD\) ta có:

\(\cos \widehat {CSD} = \dfrac{{S{D^2} + S{C^2} - C{D^2}}}{{2SD.SC}} = \dfrac{{7{a^2} + 8{a^2} - {a^2}}}{{2.a\sqrt 7 .2a\sqrt 2 }} = \dfrac{{\sqrt {14} }}{4}\).

Chọn B.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho \({\log _2}b = 4,\,\;{\log _2}c =  - 4;\) khi đó \({\log _2}({b^2}c)\) bằng 

Xem lời giải » 2 năm trước 50
Câu 2: Trắc nghiệm

Tích các nghiệm thực của phương trình \(\log _2^2x + \sqrt {3 - {{\log }_2}x}  = 3\) bằng  

Xem lời giải » 2 năm trước 42
Câu 3: Trắc nghiệm

Trong không gian\(Oxyz,\) cho \(\vec u = 3\vec i - 2\vec j + 2\vec k\). Tọa độ của \(\vec u\) là  

Xem lời giải » 2 năm trước 41
Câu 4: Trắc nghiệm

Mặt phẳng \(\left( P \right):2x - y + 3z - 1 = 0\) có một vectơ pháp tuyến là 

Xem lời giải » 2 năm trước 41
Câu 5: Trắc nghiệm

Cho hàm số \(y = f(x)\) có bảng biến thiên như hình bên. Số nghiệm của phương trình \(3f(x) - 2 = 0\) là

Xem lời giải » 2 năm trước 40
Câu 6: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình bên. Tổng giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(g\left( x \right) = f\left( {2\sin \,\dfrac{x}{2}\cos \dfrac{x}{2} + 3} \right)\) bằng

Xem lời giải » 2 năm trước 40
Câu 7: Trắc nghiệm

Cho hàm số \(f(x)\) thỏa mãn \(f\left( x \right) + 2\sqrt x f'\left( x \right) = 3x{e^{ - \sqrt x }},\forall x \in \left[ {0; + \infty } \right).\) Giá trị \(f(1)\) bằng 

Xem lời giải » 2 năm trước 39
Câu 8: Trắc nghiệm

Tập xác định của hàm số \(y = {\left( {{3^x} - 9} \right)^{ - 2}}\) là 

Xem lời giải » 2 năm trước 39
Câu 9: Trắc nghiệm

Họ các nguyên hàm \(F(x)\) của hàm số \(f(x) = 3\sin x + \dfrac{2}{x} - {e^x}\) là 

Xem lời giải » 2 năm trước 38
Câu 10: Trắc nghiệm

Cho hai điểm \(A( - 1;0;1),B( - 2;1;1).\) Phương trình mặt phẳng trung trực của đoạn \(AB\) là 

Xem lời giải » 2 năm trước 38
Câu 11: Trắc nghiệm

Cho hàm số \(y = {\log _a}x,\,\,\,0 < a \ne 1\). Khẳng định nào sau đây đúng? 

Xem lời giải » 2 năm trước 38
Câu 12: Trắc nghiệm

Với \(k\) và \(n\) là hai số nguyên dương tùy ý thỏa mãn \(k \le n\). Mệnh đề nào dưới đây đúng? 

Xem lời giải » 2 năm trước 38
Câu 13: Trắc nghiệm

Giả sử \(a,b\) là các số thực sao cho \({x^3} + {y^3} = a{.10^{3z}} + b{.10^{2z}}\) đúng với mọi các số thực dương \(x,y,z\) thoả mãn \(\log \left( {x + y} \right) = z\) và \(\log \left( {{x^2} + {y^2}} \right) = z + 1.\) Giá trị của \(a + b\) bằng 

Xem lời giải » 2 năm trước 37
Câu 14: Trắc nghiệm

Cho hình nón đỉnh \(S\) có bán kính đáy bằng \(a\sqrt 2 .\) Mặt phẳng \(\left( P \right)\) qua \(S\) cắt  đường tròn đáy tại \(A,B\) sao cho \(AB = 2a.\) Biết rằng khoảng cách từ tâm đường tròn đáy đến mặt phẳng \(\left( P \right)\) là \(\dfrac{{4a\sqrt {17} }}{{17}}.\) Thể tích khối nón bằng  

Xem lời giải » 2 năm trước 37
Câu 15: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau: Mệnh đề nào dưới đây sai?

Xem lời giải » 2 năm trước 37

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »