Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh 2a, tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính khoảng cách từ điểm S đến mặt phẳng \(\left( ABC \right)\).
A. \(2a\sqrt 3 \)
B. \(a\sqrt 6 \)
C. \(\frac{{a\sqrt 3 }}{2}\)
D. \(a\sqrt 3 \)
Lời giải của giáo viên
Gọi trung điểm của AB là I.
Tam giác SAB đều, suy ra \(SI\bot AB\).
Mà \(\left( SAB \right)\bot \left( ABC \right) \Rightarrow SI\bot \left( ABC \right)\) nên \(SI=d\left( S,\left( ABC \right) \right)\).
Theo giả thiết tam giác SAB đều nên SB=AB=2a, IB=a.
Do đó \(SI=\sqrt{S{{B}^{2}}-I{{B}^{2}}}=a\sqrt{3}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian Oxyz, mặt cầu \(\left( S \right) :{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-4x+2y-2=0\) có tọa độ tâm I là
Cho hàm số \(f\left( x \right)=\frac{{{3}^{x}}}{{{3}^{x}}+{{m}^{2}}}\) với m là tham số thực. Gọi S là tập hợp các giá trị của m sao cho \(f\left( a \right)+f\left( b \right)=1\) với mọi số thực a, b thoả mãn \({{e}^{a+b}}\le e\left( a+b \right)\). Số các phần tử của S là
Cho hàm số \(y=g(x)\) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào, trong các khoảng dưới đây?
Tính thể tích của khối lăng trụ đứng \(ABCD.{A}'{B}'{C}'{D}'\) có đáy là hình vuông cạnh 5 và \(B{B}'=6\)
Có bao nhiêu số nguyên dương y sao cho ứng với mỗi y có không quá 2019 số nguyên x thỏa mãn bất phương trình \({{x}^{2}}-\left( y+3 \right)x+3y<\left( y-x \right){{\log }_{2}}x\)
Trong không gian với hệ tọa độ Oxyz, cho điểm \(M\left( 1;0\,;\,-1 \right)\), đường thẳng \(\Delta :\frac{x+1}{-1}=\frac{y}{2}=\frac{z-1}{3}\) và mặt phẳng \(\left( P \right):4x+y+z+1=0\). Viết phương trình đường thẳng d đi qua M, cắt \(\Delta \) tại N, cắt \(\left( P \right)\) tại E sao cho M là trung điểm của NE.
Tập nghiệm của bất phương trình \({\log _{\frac{2}{3}}}\left( {2{x^2} - x + 1} \right) < 0\) là
Nghiệm của phương trình \({3^{{x^2} - 5x + 6}} = 1\) là:
Tích phân \(\int_{ - 1}^3 {\left( {3{x^2} - 1} \right)} \;{\rm{d}}x\) bằng
Hàm số nào sau đây có chiều biến thiên khác với chiều biến thiên của các hàm số còn lại.
Trong không gian Oxyz, mặt phẳng \(\left( P \right):\,2x-3y+z-4=0\) không đi qua điểm nào dưới đây?
Trong không gian Oxyz, cho ba điểm \(A\left( -2;1;3 \right), B\left( 5;0;2 \right)\) và \(C\left( 0;2;4 \right)\). Trọng tâm của tam giác ABC có tọa độ là
Trong mặt phẳng tọa độ Oxy, số phức liên hợp của số phức \(z=\left( 1+2i \right)\left( 1-i \right)\) có điểm biểu diễn là điểm nào sau đây?
Cho hàm số f(x) có bảng xét dấu của đạo hàm \({{f}^{\prime }}(x)\) như sau:
Hàm số f(x) có bao nhiêu điểm cực trị?
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l} - 3{x^2} + 5x{\rm{, khi }}x \ge 1\\ 5 - 3x,{\rm{ khi }}x < 1 \end{array} \right.\).
Tính tích phân \(I = 3\int\limits_0^{\frac{\pi }{2}} {\cos xf\left( {\sin x} \right){\rm{d}}x} + 2\int\limits_0^1 {f\left( {3 - 2x} \right){\rm{d}}x} \).