Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, \(\widehat{SAB}=\widehat{SCB}=90{}^\circ \), góc giữa hai mặt phẳng \(\left( SAB \right)\) và \(\left( SCB \right)\) bằng \(60{}^\circ \). Thể tích của khối chóp S.ABC bằng
A. \(\frac{{\sqrt 3 {a^3}}}{{24}}\)
B. \(\frac{{\sqrt 2 {a^3}}}{{12}}\)
C. \(\frac{{\sqrt 2 {a^3}}}{8}\)
D. \(\frac{{\sqrt 2 {a^3}}}{{24}}\)
Lời giải của giáo viên
Xét \(\Delta SAB\) và \(\,\Delta SCB\) có: \(\widehat{SAB}=\widehat{SCB}=90{}^\circ ;\,AB=BC\), cạnh SB chung nên \(\Delta SAB=\Delta SCB\) Trong tam giác SAB kẻ đường cao \(AE\bot SB\) khi đó \(CE\bot SB\).
Khi đó \(\left( \widehat{\left( SAB \right)\,,\,\left( SBC \right)} \right)=\left( \widehat{AE,CE} \right)=60{}^\circ \).
Trường hợp \(\widehat{AEC}=\left( \widehat{AE,CE} \right)=60{}^\circ \) thì AE=AC=AB=a điều này vô lí vì tam giác AEB vuông tại E suy ra \(\widehat{AEC}=180{}^\circ -\left( \widehat{AE,CE} \right)=120{}^\circ \)
Trong tam giác AEC cân tại E kẻ đường cao EK, ta có \(\widehat{EAK}=30{}^\circ\)
Xét tam giác vuông AEK ta có: \(AE=\frac{AK}{cos30{}^\circ }=\frac{\sqrt{3}}{3}a\).
Trong tam giác vuông ABE ta có \(BE=\sqrt{A{{B}^{2}}-A{{E}^{2}}}=\sqrt{{{a}^{2}}-\frac{{{a}^{2}}}{3}}=\frac{\sqrt{6}}{3}a\)
Trong tam giác SAB có: \(BS=\frac{A{{B}^{2}}}{BE}=\frac{a\sqrt{6}}{2}\).
\({{V}_{B.EAC}}=\frac{1}{3}.BE.\frac{1}{2}.EA.EC.\sin 120{}^\circ =\frac{1}{3}.\frac{a\sqrt{6}}{3}.\frac{1}{2}.{{\left( \frac{a}{\sqrt{3}} \right)}^{2}}.\frac{\sqrt{3}}{2}=\frac{\sqrt{2}{{a}^{3}}}{36}\).
\(\frac{{{V}_{B.EAC}}}{{{V}_{B.SAC}}}=\frac{BE}{BS}.\frac{BA}{BA}.\frac{BC}{BC}=\frac{BE}{BS}=\frac{\frac{a\sqrt{6}}{3}}{\frac{a\sqrt{6}}{2}}=\frac{2}{3}\).
\(\Rightarrow {{V}_{B.SAC}}=\frac{3}{2}.{{V}_{B.EAC}}=\frac{3}{2}.\frac{\sqrt{2}}{36}{{a}^{3}}=\frac{\sqrt{2}}{24}{{a}^{3}}\).
Vậy \({{V}_{S.ABC}}=\frac{\sqrt{2}}{24}{{a}^{3}}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho số phức z=5-3i. Môđun của số phức \(\left( 1-2i \right)\left( \overline{z}-1 \right)\) bằng
Trong không gian \(Oxyz\), điểm nào sau đây thuộc trục \(Oz\)?
Nếu \(\int\limits_{0}^{\frac{\pi }{3}}{\left[ \sin x-3f\left( x \right) \right]}\text{d}x=6\) thì \(\int\limits_{0}^{\frac{\pi }{3}}{f\left( x \right)}\text{d}x\) bằng
Chọn ngẫu nhiên một số trong 18 số nguyên dương đầu tiên. Xác suất để chọn được số lẻ bằng
Cho hàm số \(f\left( x \right)\) thỏa mãn \(\int\limits_{1}^{2}{f\left( x \right)}\text{d}x=1\) và \(\int\limits_{1}^{4}{f\left( t \right)}\text{d}t=-3\). Tính tích phân \(I=\int\limits_{2}^{4}{f\left( u \right)}\text{d}u\).
Có bao nhiêu cách xếp 4 học sinh thành một hàng dọc?
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau:
Hàm số \(y=f\left( x \right)\) nghịch biến trên khoảng nào, trong các khoảng dưới đây?
Cho tam giác ABC vuông tại A có \(AB=\sqrt{3}\) và AC=3. Thể tích V của khối nón nhận được khi quay tam giác ABC quanh cạnh AC là
Diện tích xung quanh của hình trụ có bán kính đáy R, chiều cao h là
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) thỏa mãn \(xf\left( {{x}^{2}} \right)-f\left( 2x \right)=2{{x}^{3}}+2x,\,\,\,\forall x\in \mathbb{R}\). Tính giá trị \(I=\int\limits_{1}^{2}{f\left( x \right)\text{d}x}\).
Cho khối lăng trụ tam giác đều có cạnh đáy bằng a và cạnh bên bằng \(a\sqrt{3}\). Tính thể tích khối lăng trụ đó theo a.
Nghiệm của phương trình \(\ln \left( 7x \right)=7\) là
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ bên dưới.
Tích tất cả các giá trị nguyên của tham số m để bất phương trình \({{36.12}^{f\left( x \right)}}+\left( {{m}^{2}}-5m \right){{.4}^{f\left( x \right)}}\le \left( {{f}^{2}}\left( x \right)-4 \right){{.36}^{f\left( x \right)}}\) nghiệm đúng với mọi số thực x là
Với m là tham số thực, ta có \(\int\limits_{1}^{2}{\text{(}2mx+1)\text{d}x}=4.\) Khi đó m thuộc tập hợp nào sau đây?
Cho hàm số \(y=f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\). Đồ thị hàm số \(y={f}'\left( x \right)\) như hình bên. Đặt \(g\left( x \right)=2f\left( x \right)+{{x}^{2}}+3\). Khẳng định nào sau đây là đúng?